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UNIT-1 

Introduction: What Is Data Science? 

Data science combines math and statistics, specialized programming, advanced analytics, 

artificial intelligence (AI), and machine learning with specific subject matter expertise to 

uncover actionable insights hidden in an organization’s data. These insights can be used to 

guide decision making and strategic planning. 

The accelerating volume of data sources, and subsequently data, has made data science is one 

of the fastest growing field across every industry. It's increasingly critical to businesses: The 

insights that data science generates help organizations increase operational efficiency, identify 

new business opportunities and improve marketing and sales programs, among other benefits. 

Ultimately, they can lead to competitive advantages over business rivals. 
 

Big Data and Data Science Hype 
 

Data Science Big Data 

Data Science is an area. Big Data is a technique to collect, maintain 

and process huge information. 

It is about the collection, processing, 

analyzing, and utilizing of data in various 

operations. It is more conceptual. 

It is about extracting vital and valuable 

information from a huge amount of data. 

It is a field of study just like Computer 

Science, Applied Statistics, or Applied 

Mathematics. 

It is a technique for tracking and discovering 

trends in complex data sets. 

The goal is to build data-dominant products 

for a venture. 

The goal is to make data more vital and usable 

i.e. by extracting only important information 

from the huge data within existing traditional 

aspects. 

Tools mainly used in Data Science include 

SAS, R, Python, etc 

Tools mostly used in Big Data include 

Hadoop, Spark, Flink, etc. 

It is a superset of Big Data as data science 

consists of Data scrapping, cleaning, 

visualization, statistics, and many more 

techniques. 

It is a sub-set of Data Science as mining 

activities which is in a pipeline of Data 

science. 

It is mainly used for scientific purposes. It is mainly used for business purposes and 

customer satisfaction. 



It broadly focuses on the science of the data. It is more involved with the processes of 

handling voluminous data. 

 

So, what is eyebrow-raising about Big Data and data science? Let’s count the ways: 

1. There’s a lack of definitions around the most basic terminology. What is “Big Data” 

anyway? What does “data science” mean? What is the relationship between Big Data and data 

science? Is data science the science of Big Data? Is data science only the stuff going on in 

companies like Google and Facebook and tech companies? Why do many people refer to Big 

Data as crossing disciplines (astronomy, finance, tech, etc.) and to data science as only taking 

place in tech? Just how big is big? Or is it just a relative term? These terms are so ambiguous, 

they’re well-nigh meaningless. 

2. There’s a distinct lack of respect for the researchers in academia and industry labs who 

have been working on this kind of stuff for years, and whose work is based on decades (in some 

cases, centuries) of work by statisticians, computer scientists, mathematicians, engineers, and 

scientists of all types. From the way the media describes it, machine learning algorithms were 

just invented last week and data was never “big” until Google came along. This is simply not 

the case. Many of the methods and techniques we’re using—and the challenges we’re facing 

now—are part of the evolution of everything that’s come before. This doesn’t mean that there’s 

not new and exciting stuff going on, but we think it’s important to show some basic respect for 

everything that came before. 

3. The hype is crazy—people throw around tired phrases straight out of the height of the 

pre-financial crisis era like “Masters of the Universe” to describe data scientists, and that 

doesn’t bode well. In general, hype masks reality and increases the noise-to-signal ratio. The 

longer the hype goes on, the more many of us will get turned off by it, and the harder it will be 

to see what’s good underneath it all, if anything. 

4. Statisticians already feel that they are studying and working on the “Science of Data.” 

That’s their bread and butter. Maybe you, dear reader, are not a statistician and don’t care, but 

imagine that for the statistician, this feels a little bit like how identity theft might feel for you. 

Although we will make the case that data science is not just a rebranding of statistics or machine 

learning but rather a field unto itself, the media often describes data science in a way that makes 

it sound like as if it’s simply statistics or machine learning in the context of the tech industry. 



People have said to us, “Anything that has to call itself a science isn’t.” Although there might 

be truth in there, that doesn’t mean that the term “data science” itself represents nothing, but of 

course what it represents may not be science but more of a craft. 

Getting Past the Hype 

Rachel’s experience going from getting a PhD in statistics to working at Google is a great 

example to illustrate why we thought, in spite of the aforementioned reasons to be dubious, 

there might be some meat in the data science sandwich. In her words: 

It was clear to me pretty quickly that the stuff I was working on at Google was different than 

anything I had learned at school when I got my PhD in statistics. This is not to say that my 

degree was useless; far from it—what I’d learned in school provided a framework and way of 

thinking that I relied on daily, and much of the actual content provided a solid theoretical and 

practical foundation necessary to do my work. 

But there were also many skills I had to acquire on the job at Google that I hadn’t learned in 

school. Of course, my experience is specific to me in the sense that I had a statistics background 

and picked up more computation, coding, and visualization skills, as well as domain expertise 

while at Google. Another person coming in as a computer scientist or a social scientist or a 

physicist would have different gaps and would fill them in accordingly. But what is important 

here is that, as individuals, we each had different strengths and gaps, yet we were able to solve 

problems by putting ourselves together into a data team well-suited to solve the data problems 

that came our way. 

Here’s a reasonable response you might have to this story. It’s a general truism that, whenever 

you go from school to a real job, you realize there’s a gap between what you learned in school 

and what you do on the job. In other words, you were simply facing the difference between 

academic statistics and industry statistics. 

We have a couple replies to this: 

 Sure, there’s is a difference between industry and academia. But does it really have to 

be that way? Why do many courses in school have to be so intrinsically out of touch with 

reality? 



 Even so, the gap doesn’t represent simply a difference between industry statistics and 

academic statistics. The general experience of data scientists is that, at their job, they have 

access to a larger body of knowledge and methodology, as well as a process, which we now 

define as the data science process (details in Chapter 2), that has foundations in both statistics 

and computer science. 

Around all the hype, in other words, there is a ring of truth: this is something new. But at the 

same time, it’s a fragile, nascent idea at real risk of being rejected prematurely. For one thing, 

it’s being paraded around as a magic bullet, raising unrealistic expectations that will surely be 

disappointed. 

Rachel gave herself the task of understanding the cultural phenomenon of data science and how 

others were experiencing it. She started meeting with people at Google, at startups and tech 

companies, and at universities, mostly from within statistics departments. 

From those meetings she started to form a clearer picture of the new thing that’s emerging. She 

ultimately decided to continue the investigation by giving a course at Columbia called 

“Introduction to Data Science,” which Cathy covered on her blog. 

 

Datafication 
In the May/June 2013 issue of Foreign Affairs, Kenneth Neil Cukier and Viktor Mayer-

Schoenberger wrote an article called “The Rise of Big Data”. In it they discuss the concept of 

datafication, and their example is how we quantify friendships with “likes”: it’s the way 

everything we do, online or otherwise, ends up recorded for later examination in someone’s 

data storage units. Or maybe multiple storage units, and maybe also for sale. 

They define datafication as a process of “taking all aspects of life and turning them into data.” 

As examples, they mention that “Google’s augmented-reality glasses datafy the gaze. Twitter 

datafies stray thoughts. LinkedIn datafies professional networks.” 

Datafication is an interesting concept and led us to consider its importance with respect to 

people’s intentions about sharing their own data. We are being datafied, or rather our actions 

are, and when we “like” someone or something online, we are intending to be datafied, or at 

least we should expect to be. But when we merely browse the Web, we are unintentionally, or 

at least passively, being datafied through cookies that we might or might not be aware of. And 

when we walk around in a store, or even on the street, we are being datafied in a completely 

unintentional way, via sensors, cameras, or Google glasses.  

This spectrum of intentionality ranges from us gleefully taking part in a social media 

experiment we are proud of, to all-out surveillance and stalking. But it’s all datafication. Our 

intentions may run the gamut, but the results don’t. 

https://www.oreilly.com/library/view/doing-data-science/9781449363871/ch02.html#chapter-statistical-interference-EDA


They follow up their definition in the article with a line that speaks volumes about their 

perspective: 

Once we datafy things, we can transform their purpose and turn the information into new forms 

of value. 

Here’s an important question that we will come back to throughout the book: who is “we” in 

that case? What kinds of value do they refer to? Mostly, given their examples, the “we” is the 

modelers and entrepreneurs making money from getting people to buy stuff, and the “value” 

translates into something like increased efficiency through automation. 

 

The Current Landscape 

So, what is data science? Is it new, or is it just statistics or analytics rebranded? Is it real, or is 

it pure hype? And if it’s new and if it’s real, what does that mean? 

This is an ongoing discussion, but one way to understand what’s going on in this industry is to 

look online and see what current discussions are taking place. This doesn’t necessarily tell us 

what data science is, but it at least tells us what other people think it is, or how they’re 

perceiving it. For example, on Quora there’s a discussion from 2010 about “What is Data 

Science?” and here’s Metamarket CEO Mike 

Driscoll’s answer: 

Data science, as it’s practiced, is a blend of Red-Bull-fueled hacking and espresso-inspired 

statistics. But data science is not merely hacking—because when hackers finish debugging 

their Bash one-liners and Pig scripts, few of them care about non-Euclidean distance metrics. 

And data science is not merely statistics, because when statisticians finish theorizing the perfect 

model, few could read a tab-delimited file into R if their job depended on it. Data science is the 

civil engineering of data. Its acolytes possess a practical knowledge of tools and materials, 

coupled with a theoretical understanding of what’s possible. 

Driscoll then refers to Drew Conway’s Venn diagram of data science from 2010, shown in 

Figure 1-1. 



 

 

He also mentions the sexy skills of data geeks from Nathan Yau’s 2009 post, “Rise of the Data 

Scientist”, which include: 

• Statistics (traditional analysis you’re used to thinking about)  

• Data munging (parsing, scraping, and formatting data)  

• Visualization (graphs, tools, etc.) 

But wait, is data science just a bag of tricks? Or is it the logical extension of other fields like 

statistics and machine learning? For one argument, see Cosma Shalizi’s posts here and here, 

and Cathy’s posts here and here, which constitute an ongoing discussion of the difference 

between a statistician and a data scientist. Cosma basically argues that any statistics department 

worth its salt does all the stuff in the descriptions of data science that he sees, and therefore 

data science is just a rebranding and unwelcome takeover of statistics. For a slightly different 

perspective, see ASA President Nancy Geller’s 2011 Amstat News article, “Don’t shun the ‘S’ 

word”, in which she defends statistics: 

We need to tell people that Statisticians are the ones who make sense of the data deluge 

occurring in science, engineering, and medicine; that statistics provides methods for data 

analysis in all fields, from art history to zoology; that it is exciting to be a Statistician in the 

21st century because of the many challenges brought about by the data explosion in all of these 

fields. 

Though we get her point—the phrase “art history to zoology” is supposed to represent the 

concept of A to Z—she’s kind of shooting herself in the foot with these examples because they 

don’t correspond to the high-tech world where much of the data explosion is coming from. 

Much of the development of the field is happening in industry, not academia. That is, there are 

people with the job title data scientist in companies, but no professors of data science in 

academia. (Though this may be changing.) 



Not long ago, DJ Patil described how he and Jeff Hammerbacher— then at LinkedIn and 

Facebook, respectively—coined the term “data scientist” in 2008. So that is when “data 

scientist” emerged as a job title. (Wikipedia finally gained an entry on data science in 2012.) It 

makes sense to us that once the skill set required to thrive at Google —working with a team on 

problems that required a hybrid skill set of stats and computer science paired with personal 

characteristics including curiosity and persistence—spread to other Silicon Valley tech 

companies, it required a new job title. Once it became a pattern, it deserved a name. And once 

it got a name, everyone and their mother wanted to be one. It got even worse when Harvard 

Business Review declared data scientist to be the “Sexiest Job of the 21st Century”. 

 
The Role of the Social Scientist in Data Science 
 

Both LinkedIn and Facebook are social network companies. Oftentimes a description or 

definition of data scientist includes hybrid statistician, software engineer, and social scientist. 

This made sense in the context of companies where the product was a social product and still 

makes sense when we’re dealing with human or user behavior. But if you think about Drew 

Conway’s Venn diagram, data science problems cross disciplines—that’s what the substantive 

expertise is referring to. In other words, it depends on the context of the problems you’re trying 

to solve.  

If they’re social science-y problems like friend recommendations or people you know or user 

segmentation, then by all means, bring on the social scientist! Social scientists also do tend to 

be good question askers and have other good investigative qualities, so a social scientist who 

also has the quantitative and programming chops makes a great data scientist. But it’s almost 

a “historical” (historical is in quotes because 2008 isn’t that long ago) artifact to limit your 

conception of a data scientist to someone who works only with online user behavior data.  

There’s another emerging field out there called computational social sciences, which could be 

thought of as a subset of data science. But we can go back even further. In 2001, William 

Cleveland wrote a position paper about data science called “Data Science: An action plan to 

expand the field of statistics.” So data science existed before data scientists? Is this semantics, 

or does it make sense? This all begs a few questions: can you define data science by what data 

scientists do? Who gets to define the field, anyway? There’s lots of buzz and hype—does the 

media get to define it, or should we rely on the practitioners, the self-appointed data scientists? 

Or is there some actual authority? Let’s leave these as open questions for now, though we will 

return to them throughout the book. 

 
Data Science Jobs 

Columbia just decided to start an Institute for Data Sciences and Engineering with Bloomberg’s 

help. There are 465 job openings in New York City alone for data scientists last time we 

checked. That’s a lot. So even if data science isn’t a real field, it has real jobs. And here’s one 



thing we noticed about most of the job descriptions: they ask data scientists to be experts in 

computer science, statistics, communication, data visualization, and to have extensive domain 

expertise. Nobody is an expert in everything, which is why it makes more sense to create teams 

of people who have different profiles and different expertise—together, as a team, they can 

specialize in all those things. We’ll talk about this more after we look at the composite set of 

skills in demand for today’s data scientists. 

 

Statistical Inference 

The world we live in is complex, random, and uncertain. At the same time, it’s one big data-

generating machine. As we commute to work on subways and in cars, as our blood moves 

through our bodies, as we’re shopping, emailing, procrastinating at work by browsing the 

Internet and watching the stock market, as we’re building things, eating things, talking to our 

friends and family about things, while factories are producing products, this all at least 

potentially produces data. 

Imagine spending 24 hours looking out the window, and for every minute, counting and 

recording the number of people who pass by. Or gathering up everyone who lives within a mile 

of your house and making them tell you how many email messages they receive every day for 

the next year. Imagine heading over to your local hospital and rummaging around in the blood 

samples looking for patterns in the DNA. That all sounded creepy, but it wasn’t supposed to. 

The point here is that the processes in our lives are actually data-generating processes. 

We’d like ways to describe, understand, and make sense of these processes, in part because as 

scientists we just want to understand the world better, but many times, understanding these 

processes is part of the solution to problems we’re trying to solve. Data represents the traces of 

the real-world processes, and exactly which traces we gather are decided by our data collection 

or sampling method. You, the data scientist, the observer, are turning the world into data, and 

this is an utterly subjective, not objective, process. After separating the process from the data 

collection, we can see clearly that there are two sources of randomness and uncertainty. 

Namely, the randomness and uncertainty underlying the process itself, and the uncertainty 

associated with your underlying data collection methods. Once you have all this data, you have 

somehow captured the world, or certain traces of the world. But you can’t go walking around 

with a huge Excel spreadsheet or database of millions of transactions and look at it and, with a 

snap of a finger, understand the world and process that generated it. So you need a new idea, 

and that’s to simplify those captured traces into something more comprehensible, to something 

that somehow captures it all in a much more concise way, and that something could be 

mathematical models or functions of the data, known as statistical estimators. 

This overall process of going from the world to the data, and then from the data back to the 

world, is the field of statistical inference. More precisely, statistical inference is the discipline 

that concerns itself with the development of procedures, methods, and theorems that allow us 

to extract meaning and information from data that has been generated by stochastic (random) 

processes. 



 

Populations and Samples 

Let’s get some terminology and concepts in place to make sure we’re all talking about the same 

thing.In classical statistical literature, a distinction is made between the population and the 

sample. The word population immediately makes us think of the entire US population of 300 

million people, or the entire world’s population of 7 billion people. But put that image out of 

your head, because in statistical inference population isn’t used to simply describe only people. 

It could be any set of objects or units, such as tweets or photographs or stars. If we could 

measure the characteristics or extract characteristics of all those objects, we’d have a complete 

set of observations, and the convention is to use N to represent the total number of observations 

in the population. Suppose your population was all emails sent last year by employees at a huge 

corporation, BigCorp. Then a single observation could be a list of things: the sender’s name, 

the list of recipients, date sent, text of email, number of characters in the email, number of 

sentences in the email, number of verbs in the email, and the length of time until first reply.  

When we take a sample, we take a subset of the units of size n in order to examine the 

observations to draw conclusions and make inferences about the population. There are different 

ways you might go about getting this subset of data, and you want to be aware of this sampling 

mechanism because it can introduce biases into the data, and distort it, so that the subset is not 

a “mini-me” shrunk-down version of the population. Once that happens, any conclusions you 

draw will simply be wrong and distorted. 

In the BigCorp email example, you could make a list of all the employees and select 1/10th of 

those people at random and take all the email they ever sent, and that would be your sample. 

Alternatively, you could sample 1/10th of all email sent each day at random, and that would be 

your sample. Both these methods are reasonable, and both methods yield the same sample size. 

But if you took them and counted how many email messages each person sent, and used that 

to estimate the underlying distribution of emails sent by all indiviuals at BigCorp, you might 

get entirely different answers. So if even getting a basic thing down like counting can get 

distorted when you’re using a reasonable-sounding sampling method, imagine what can happen 

to more complicated algorithms and models if you haven’t taken into account the process that 

got the data into your hands. 

 

Modeling 

In the next chapter, we’ll look at how we build models from the data we collect, but first we 

want to discuss what we even mean by this term. Rachel had a recent phone conversation with 

someone about a modelling workshop, and several minutes into it she realized the word 

“model” meant completely different things to them. He was using it to mean data models—the 

representation one is choosing to store one’s data, which is the realm of database managers—

whereas she was talking about statistical models, which is what much of this book is about.  



One of Andrew Gelman’s blog posts on modeling was recently tweeted by people in the fashion 

industry, but that’s a different issue. Even if you’ve used the terms statistical model or 

mathematical model for years, is it even clear to yourself and to the people you’re talking to 

what you mean? What makes a model a model? Also, while we’re asking fundamental 

questions like this, what’s the difference between a statistical model and a machine learning 

algorithm? Before we dive deeply into that, let’s add a bit of context with this deliberately 

provocative Wired magazine piece, “The End of Theory: The Data Deluge Makes the Scientific 

Method Obsolete,” published in 2008 by Chris Anderson, then editor-in-chief. Anderson 

equates massive amounts of data to complete information and argues no models are necessary 

and “correlation is enough”; e.g., that in the context of massive amounts of data, “they [Google] 

don’t have to settle for models at all.” 

Really? We don’t think so, and we don’t think you’ll think so either by the end of the book. 

But the sentiment is similar to the Cukier and Mayer-Schoenberger article we just discussed 

about N=ALL, so you might already be getting a sense of the profound confusion we’re 

witnessing all around us. To their credit, it’s the press that’s currently raising awareness of 

these questions and issues, and someone has to do it. Even so, it’s hard to take when the opinion 

makers are people who don’t actually work with data. Think critically about whether you buy 

what Anderson is saying; where you agree, disagree, or where you need more information to 

form an opinion. Given that this is how the popular press is currently describing and influencing 

public perception of data science and modeling, it’s incumbent upon us as data scientists to be 

aware of it and to chime in with informed comments. With that context, then, what do we mean 

when we say models? And how do we use them as data scientists? To get at these questions, 

let’s dive in. 

 

What is a model? 

Humans try to understand the world around them by representing it in different ways. 

Architects capture attributes of buildings through blueprints and three-dimensional, sca led-

down versions. Molecular biologists capture protein structure with three-dimensional 

visualizations of the connections between amino acids. Statisticians and data scientists capture 

the uncertainty and randomness of data-generating processes with mathematical functions that 

express the shape and structure of the data itself. A model is our attempt to understand and 

represent the nature of reality through a particular lens, be it architectural, biological, or 

mathematical. 

A model is an artificial construction where all extraneous detail has been removed or 

abstracted. Attention must always be paid to these abstracted details after a model has been 

analyzed to see what might have been overlooked. In the case of proteins, a model of the protein 

backbone with side chains by itself is removed from the laws of quantum mechanics that govern 

the behavior of the electrons, which ultimately dictate the structure and actions of proteins. In 

the case of a statistical model, we may have mistakenly excluded key variables, included 

irrelevant ones, or assumed a mathematical structure divorced from reality. 

 



Statistical modelling 

Before you get too involved with the data and start coding, it’s useful to draw a picture of what 

you think the underlying process might be with your model. What comes first? What influences 

what? What causes what? What’s a test of that? But different people think in different ways. 

Some prefer to express these kinds of relationships in terms of math. The mathematical 

expressions will be general enough that they have to include parameters, but the values of these 

parameters are not yet known. In mathematical expressions, the convention is to use Greek 

letters for parameters and Latin letters for data. So, for example, if you have two columns of 

data, x and y, and you think there’s a linear relationship, you’d write down y = β0 +β1x. You 

don’t know what β0 and β1 are in terms of actual numbers yet, so they’re the parameters. 

Other people prefer pictures and will first draw a diagram of data flow, possibly with arrows, 

showing how things affect other things or what happens over time. This gives them an abstract 

picture of the relationships before choosing equations to express them.  

 

Probability distributions 

Probability distributions are the foundation of statistical models. When we get to linear 

regression and Naive Bayes, you will see how this happens in practice. One can take multiple 

semesters of courses on probability theory, and so it’s a tall challenge to condense it down for 

you in a small section. 

Back in the day, before computers, scientists observed real-world phenomenon, took 

measurements, and noticed that certain mathematical shapes kept reappearing. The classical 

example is the height of humans, following a normal distribution—a bell-shaped curve, also 

called a Gaussian distribution, named after Gauss. Other common shapes have been named 

after their observers as well (e.g., the Poisson distribution and the Weibull distribution), while 

other shapes such as Gamma distributions or exponential distributions are named after 

associated mathematical objects.  

Natural processes tend to generate measurements whose empirical shape could be 

approximated by mathematical functions with a few parameters that could be estimated from 

the data. Not all processes generate data that looks like a named distribution, but many do. We 

can use these functions as building blocks of our models. It’s beyond the scope of the book to 

go into each of the distributions in detail, but we provide them in Figure 2-1 as an illustration 

of the various common shapes, and to remind you that they only have names because someone 

observed them enough times to think they deserved names. There is actually an infinite number 

of possible distributions. They are to be interpreted as assigning a probability to a subset of 

possible outcomes, and have corresponding functions. For example, the normal distribution is 

written as: 



 
The parameter μ is the mean and median and controls where the distribution is centered 

(because this is a symmetric distribution), and the parameter σ controls how spread out the 

distribution is. This is the general functional form, but for specific real-world phenomenon, 

these parameters have actual numbers as values, which we can estimate from the data. 

 
 

 

A random variable denoted by x or y can be assumed to have a corresponding probability 

distribution, p(x), which maps x to a positive real number. In order to be a probability density 

function, were restricted to the set of functions such that if we integrate p(x) to get the area 

under the curve, it is 1, so it can be interpreted as probability. 

In addition to denoting distributions of single random variables with functions of one variable, 

we use multivariate functions called joint distributions to do the same thing for more than one 

random variable. So in the case of two random variables, for example, we could denote our 

distribution by a function p(x, y), and it would take values in the plane and give us nonnegative 



values. In keeping with its interpretation as a probability, its (double) integral over the whole 

plane would be 1. 

We also have what is called a conditional distribution, p(x|y) , which is to be interpreted as the 

density function of x given a particular value of y. 

When we observe data points, i.e., (x1, y1), (x2, y2), . . ., (xn, yn ), we are observing realizations 

of a pair of random variables. When we have an entire dataset with n rows and k columns, we 

are observing n realizations of the joint distribution of those k random variables. 

Fitting a model 

Fitting a model means that you estimate the parameters of the model using the observed data. 

You are using your data as evidence to help approximate the real-world mathematical process 

that generated the data. Fitting the model often involves optimization methods and algorithms, 

such as maximum likelihood estimation, to help get the parameters. 

Fitting the model is when you start actually coding: your code will read n the data, and you’ll 

specify the functional form that you wrote down on the piece of paper. Then R or Python will 

use built-in optimization methods to give you the most likely values of the parameters given 

the data. As you gain sophistication, or if this is one of your areas of expertise, you’ll dig around 

in the optimization methods yourself. Initially you should have an understanding that 

optimization is taking place and how it works, but you don’t have to code this part yourself—

it underlies the R or Python functions. 

Overfitting 

Throughout the book you will be cautioned repeatedly about overfitting, possibly to the point 

you will have nightmares about it. Overfitting is the term used to mean that you used a dataset 

to estimate the parameters of your model, but your model isn’t that good at capturing reality 

beyond your sampled data. You might know this because you have tried to use it to predict 

labels for another set of data that you didn’t use to fit the model, and it doesn’t do a good job, 

as measured by an evaluation metric such as accuracy. 

Basics of R 

Introduction 

 

 R is a programming language and software environment for statistical analysis, 

graphics representation and reporting.  

 R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New 

Zealand, and is currently developed by the R Development Core Team.  

 R is freely available under the GNU General Public License, and pre-compiled binary 

versions are provided for various operating systems like Linux, Windows and Mac.  



 This programming language was named R, based on the first letter of first name of the 

two R authors (Robert Gentleman and Ross Ihaka), and partly a play on the name of 

the Bell Labs Language S.  

 The core of R is an interpreted computer language which allows branching and looping 

as well as modular programming using functions.  

 R allows integration with the procedures written in the C, C++, .Net, Python or 

FORTRAN languages for efficiency. 

Evolution of R 

R was initially written by Ross Ihaka and Robert Gentleman at the Department of Statistics 

of the University of Auckland in Auckland, New Zealand. R made its first appearance in 1993. 

 A large group of individuals has contributed to R by sending code and bug reports. 

 Since mid-1997 there has been a core group (the "R Core Team") who can modify the 

R source code archive. 

 

Features of R 

As stated earlier, R is a programming language and software environment for statistical 

analysis, graphics representation and reporting. The following are the important features of R 

− 

 R is a well-developed, simple and effective programming language which includes 

conditionals, loops, user defined recursive functions and input and output facilities. 

 R has an effective data handling and storage facility, 

 R provides a suite of operators for calculations on arrays, lists, vectors and matrices. 
 R provides a large, coherent and integrated collection of tools for data analysis. 

 R provides graphical facilities for data analysis and display either directly at the 

computer or printing at the papers. 

 

R - Environment Setup 
 

1. Installation of R and RStudio in Windows. 

 

In Linux: (Through Terminal) 

 

 Press Ctrl+Alt+T to open Terminal 

 Then execute sudo apt-get update  

 After that, sudo apt-get install r-base 

 

In Windows: 

Install R on windows 

Step – 1: Go to CRAN R project website. (Comprehensive R Archive Network ) 

Step – 2: Click on the Download R for Windows link. 

https://cran.r-project.org/


Step – 3: Click on the base subdirectory link or install R for the first time link. 

Step – 4: Click Download R X.X.X for Windows (X.X.X stand for the latest version of R. 

eg: 3.6.1) and save the executable .exe file. 

Step – 5: Run the .exe file and follow the installation instructions. 

5.a. Select the desired language and then click Next. 

5.b. Read the license agreement and click Next. 

5.c. Select the components you wish to install (it is recommended to install all the 

components). Click Next. 

5.d. Enter/browse the folder/path you wish to install R into and then confirm by 

clicking Next. 

5.e. Select additional tasks like creating desktop shortcuts etc. then click Next. 

5.f. Wait for the installation process to complete. 

5.g. Click on Finish to complete the installation. 

 

Install RStudio on Windows 

Step – 1: With R-base installed, let’s move on to installing RStudio. To begin, go 

to download RStudio and click on the download button for RStudio desktop. 

Step – 2: Click on the link for the windows version of RStudio and save the .exe file. 

Step – 3: Run the .exe and follow the installation instructions. 

3.a. Click Next on the welcome window. 

3.b. Enter/browse the path to the installation folder and click Next to proceed. 

3.c. Select the folder for the start menu shortcut or click on do not create shortcuts and 

then click Next. 

3.d. Wait for the installation process to complete. 

3.e. Click Finish to end the installation. 

 

Programming with R 
R - Basic Syntax 

To output text in R, use single or double quotes: 

"Hello World!" 

 

To output numbers, just type the number (without quotes): 

5 

10 

25 

 

 

To do simple calculations, add numbers together: 

2+3 

 

Output:5 

 

 

R Print Output 



Print 

Unlike many other programming languages, you can output code in R without using a print 
function: 

Example 

"Hello!" 

 

However, R does have a print() function available if you want to use it. 

 

Example 

print("Hello!") 

 

And there are times you must use the print() function to output code, for example 

x<-10 

print(x) 

 

R Comments 

Comments 

Comments can be used to explain R code, and to make it more readable. It can also be used to 
prevent execution when testing alternative code. 

Comments starts with a #. When executing code, R will ignore anything that starts with #. 

This example uses a comment before a line of code: 

Example 

# This is a comment 

"Hello!" 

This example uses a comment at the end of a line of code: 

Example 

"Hello World!" # This is a comment 

 



Multiline Comments 

Unlike other programming languages, such as Java, there are no syntax in R for multiline 
comments. However, we can just insert a # for each line to create multiline comments: 

 

Example 

# This is a comment 

# written in 

# more than just one line 

"Hello!" 

 

R Variables 

Creating Variables in R 

Variables are containers for storing data values. 

R does not have a command for declaring a variable. A variable is created the moment you first 

assign a value to it. To assign a value to a variable, use the <- sign. To output (or print) the 

variable value, just type the variable name: 

Example 

name <- "John" 

age <- 40 

 

name   # output "John" 

age    # output 40 

In other programming language, it is common to use = as an assignment operator. In R, we can 

use both = and <- as assignment operators. 

However, <- is preferred in most cases because the = operator can be forbidden in some context 

in R. 

 

Print / Output Variables 

Compared to many other programming languages, you do not have to use a function to 

print/output variables in R. You can just type the name of the variable: 

Example 

name <- "John" 

 

name # auto-print the value of the name variable 



 

Example 

name <- "John" 

 

print(name) # print the value of the name variable 

 

Concatenate Elements 

You can also concatenate, or join, two or more elements, by using the paste() function. 

To combine both text and a variable, R uses comma (,): 

Example 

text <- "awesome" 

 

paste("R is", text) 

Example 

text1 <- "R is" 

text2 <- "awesome" 

 

paste(text1, text2) 

 

For numbers, the + character works as a mathematical operator: 

Example 

num1 <- 5 

num2 <- 10 

 

num1 + num2 

 

If you try to combine a string (text) and a number, R will give you an error: 

Example 

num <- 5 

text <- "Some text" 

 

num + text 

Result: 



Error in num + text : non-numeric argument to binary operator 

 

 

Multiple Variables 

R allows you to assign the same value to multiple variables in one line: 

Example 

# Assign the same value to multiple variables in one line 

var1 <- var2 <- var3 <- "Orange" 

 

# Print variable values 

var1 

var2 

var3 

 

Variable Names 

A variable can have a short name (like x and y) or a more descriptive name (age, carname, 

total_volume). Rules for R variables are: 

 A variable name must start with a letter and can be a combination of letters, digits, 

period(.) and underscore(_).  

 If it starts with period(.), it cannot be followed by a digit. 

 A variable name cannot start with a number or underscore (_) 

 Variable names are case-sensitive (age, Age and AGE are three different variables) 

 Reserved words cannot be used as variables (TRUE, FALSE, NULL, if...) 

# Legal variable names: 

myvar <- "John" 

my_var <- "John" 

myVar <- "John" 

MYVAR <- "John" 

myvar2 <- "John" 

.myvar <- "John" 

 

# Illegal variable names: 

2myvar <- "John" 

my-var <- "John" 

my var <- "John" 

_my_var <- "John" 

my_v@ar <- "John" 

TRUE <- "John" 

 



R Data Types 

Variables can store data of different types, and different types can do different things. 

In R, variables do not need to be declared with any particular type, and can even change type 

after they have been set: 

Example 

my_var <- 30   

my_var <- "raghul" 

 

Basic Data Types 

Basic data types in R can be divided into the following types: 

 numeric - (10.5, 55, 787) 

 integer - (1L, 55L, 100L, where the letter "L" declares this as an integer) 

 complex - (9 + 3i, where "i" is the imaginary part) 

 character (string) - ("k", "R is exciting", "FALSE", "11.5") 

 logical (boolean) - (TRUE or FALSE) 

We can use the class() function to check the data type of a variable: 

Example 

# numeric 

x <- 10.5 

class(x) 

 

# integer 

x <- 1000L 

class(x) 

 

# complex 

x <- 9i + 3 

class(x) 

 

# character/string 

x <- "R is exciting" 

class(x) 

 

# logical/boolean 

x <- TRUE 

class(x) 

 



 

R Numbers 

 

Numbers 

There are three number types in R: 

 numeric 

 integer 

 complex 

Variables of number types are created when you assign a value to them: 

Example 

x <- 10.5   # numeric 

y <- 10L    # integer 

z <- 1i     # complex 

 

Numeric 

A numeric data type is the most common type in R, and contains any number with or without 
a decimal, like: 10.5, 55, 787: 

 

Example 

x <- 10.5 

y <- 55 

 

# Print values of x and y 

x 

y 

 

# Print the class name of x and y 

class(x) 

class(y) 

 

Integer 

Integers are numeric data without decimals. This is used when you are certain that you will 

never create a variable that should contain decimals. To create an integer variable, you must 

use the letter L after the integer value: 



Example 

x <- 1000L 

y <- 55L 

 

# Print values of x and y 

x 

y 

 

# Print the class name of x and y 

class(x) 

class(y) 

 

Complex 

A complex number is written with an "i" as the imaginary part: 

Example 

x <- 3+5i 

y <- 5i 

 

# Print values of x and y 

x 

y 

 

# Print the class name of x and y 

class(x) 

class(y) 

 

Type Conversion 

You can convert from one type to another with the following functions: 

 as.numeric() 

 as.integer() 

 as.complex() 

Example 

x <- 1L # integer 

y <- 2 # numeric 

 

# convert from integer to numeric: 

a <- as.numeric(x) 

 



# convert from numeric to integer: 

b <- as.integer(y) 

 

# print values of x and y 

x 

y 

 

# print the class name of a and b 

class(a) 

class(b) 

 



UNIT-2 

Types of Data 

A data set can often be viewed as a collection of data objects. Other names for a data object are 

record, point, vector, pattern, event, case, sample, observation, or entity. In turn, data objects 

are described by a number of attributes that capture the basic characteristics of an object, such 

as the mass of a physical object or the time at which an event occurred. Other names for an 

attribute are variable, characteristic, field, feature, or dimension. 

Example (Student Information). Often, a data set is a file, in which the objects are records (or 

rows) in the file and each field (or column) corresponds to an attribute. For example, Table 2.1 

shows a data set that consists of student information. Each row corresponds to a student and 

each column is an attribute that describes some aspect of a student, such as grade point average 

(GPA) or identification number (ID). 

 

Although record-based data sets are common, either in flat files or relational database systems, 

there are other important types of data sets and systems for storing data.  

 

Attributes and Measurement 

What is an attribute? 

We start with a more detailed definition of an attribute. 

Definition 1. An attribute is a property or characteristic of an object that may vary; either from 

one object to another or from one time to another. 

For example, eye color varies from person to person, while the temperature of an object varies 

over time. Note that eye color is a symbolic attribute with a small number of possible values 

{brown, black, blue, green, hazel, etc.}, while temperature is a numerical attribute with a 

potentially unlimited number of values. 



At the most basic level, attributes are not about numbers or symbols. However, to discuss and 

more precisely analyze the characteristics of objects, we assign numbers or symbols to them. 

To do this in a well-defined way, we need a measurement scale. 

 

Definition 2. A measurement scale is a rule (function) that associates a numerical or symbolic 

value with an attribute of an object. Formally, the process of measurement is the application of 

a measurement scale to associate a value with a particular attribute of a specific object. While 

this may seem a bit abstract, we engage in the process of measurement all the time.  

For instance, we step on a bathroom scale to determine our weight, we classify someone as 

male or female, or we count the number of chairs in a room to see if there will be enough to 

seat all the people coming to a meeting. In all these cases) the "physical value" of an attribute 

of an object is mapped to a numerical or symbolic value. With this background, we can now 

discuss the type of an attribute, a concept that is important in determining if a particular data 

analysis technique is consistent with a specific type of attribute. 

 
 

The Type of an Attribute 

In other words, the values used to represent an attribute may have properties that are not 

properties of the attribute itself, and vice versa. This is illustrated with two examples. 

Example 1 (Employee Age and ID Number). Two attributes that might be associated with an 

employee are ID and age (in years). Both of these attributes can be represented as integers. 

However, while it is reasonable to talk about the average age of an employee, it makes no sense 

to talk about the average employee ID. 

Indeed, the only aspect of employees that we want to capture with the ID attribute is that they 

are distinct. Consequently, the only valid operation for employee IDs is to test whether they 

are equal. There is no hint of this limitation, however, when integers are used to represent the 

employee ID attribute. For the age attribute, the properties of the integers used to represent age 

are very much the properties of the attribute. Even so, the correspondence is not complete since, 

for example, ages have a maximum' while integers do not. 

Consider below Figure, which shows some objects-line segments and how the length attribute 

of these objects can be mapped to numbers in two different ways. Each successive line segment, 

going from the top to the bottom, is formed by appending the topmost line segment to itself. 

Thus, the second line segment from the top is formed by appending the topmost line segment 

to itself twice, the third line segment from the top is formed by appending the topmost line 

segment to itself three times, and so forth. In a very real (physical) sense, all the line segments 

are multiples of the first. This fact is captured by the measurements on the right-hand side of 

the figure, but not by those on the left hand-side.  

More specifically, the measurement scale on the left-hand side captures only the ordering of 

the length attribute, while the scale on the right-hand side captures both the ordering and 

additivity properties. Thus, an attribute can be measured in a way that does not capture all the 



properties of the attribute. The type of an attribute should tell us what properties of the attribute 

are reflected in the values used to measure it. Knowing the type of an attribute is important 

because it tells us which properties of the measured values are consistent with the underlying 

properties of the attribute, and therefore, it allows us to avoid foolish actions, such as 

computing the average employee ID. 

Note that it is common to refer to the type of an attribute as the type of a measurement scale. 

 
 

The Different Types of Attributes 

A useful (and simple) way to specify the type of an attribute is to identify the properties of 

numbers that correspond to underlying properties of the attribute. For example, an attribute 

such as length has many of the properties of numbers. It makes sense to compare and order 

objects by length, as well as to talk about the differences and ratios of length. The following 

properties (operations) of numbers are typically used to describe attributes. 

 
Given these properties, we can define four types of attributes: nominal, ordinal, interval, and 

ratio. Table 2.2 gives the definitions of these types, along with information about the statistical 

operations that are valid for each type. Each attribute type possesses all of the properties and 

operations of the attribute types above it. Consequently, any property or operation that is valid 

for nominal, ordinal, and interval attributes is also valid for ratio attributes. In other words, the 

definition of the attribute types is cumulative. However, this does not mean that the operations 

appropriate for one attribute type are appropriate for the attribute types above it. 



  
Nominal and ordinal attributes are collectively referred to as categorical or qualitative 

attributes. As the name suggests, qualitative attributes, such as employee ID, lack most of the 

properties of numbers. Even if they are represented by numbers, i.e., integers, they should be 

treated more like symbols. The remaining two types of attributes, interval and ratio, are 

collectively referred to as quantitative or numeric attributes. Quantitative attributes are 

represented by numbers and have most of the properties of numbers. Note that quantitative 

attributes can be integer-valued or continuous. The types of attributes can also be described in 

terms of transformations that do not change the meaning of an attribute. Indeed, S. Smith 

Stevens, the psychologist who originally defined the types of attributes shown in Table 2.2, 

defined them in terms of these permissible transformations.  



 
For example, the meaning of a length attribute is unchanged if it is measured in meters instead 

of feet. 

The statistical operations that make sense for a particular type of attribute are those that will 

yield the same results when the attribute is transformed using a transformation that preserves 

the attribute's meaning. To illustrate, the average length of a set of objects is different when 

measured in meters rather than in feet, but both averages represent the same length. Table 2.3 

shows the permissible (meaning-preserving) transformations for the four attribute types of 

Table 2.2. 

 

Example 2 (Temperature Scales). Temperature provides a good illustration of some of the 

concepts that have been described. First, temperature can be either an interval or a ratio 

attribute, depending on its measurement scale. When measured on the Kelvin scale, a 

temperature of 2o is, in a physically meaningful way, twice that of a temperature of 1o. This is 

not true when temperature is measured on either the Celsius or Fahrenheit scales, because, 

physically, a temperature of 1o Fahrenheit (Celsius) is not much different than a temperature 

of 2" Fahrenheit (Celsius). The problem is that the zero points of the Fahrenheit and Celsius 

scales are, in a physical sense, arbitrary, and therefore, the ratio of two Celsius or Fahrenheit 

temperatures is not physically meaningful.  

 

Describing Attributes by the Number of Values 

An independent way of distinguishing between attributes is by the number of values they can 

take. 

Discrete: A discrete attribute has a finite or countably infinite set of values. Such attributes can 

be categorical, such as zip codes or ID numbers, or numeric, such as counts. Discrete attributes 

are often represented using integer variables. Binary attributes are a special case of discrete 

attributes and assume only two values, e.g., true/false, yes/no, male/female, or 0 / 1. Binary 

attributes are often represented as Boolean variables, or as integer variables that only take the 

values 0 or 1. 



Continuous: A continuous attribute is one whose values are real numbers. Examples include 

attributes such as temperature, height, or weight. Continuous attributes are typically 

represented as floating-point variables. Practically, real values can only be measured and 

represented with limited precision. In theory, any of the measurement scale types-nominal, 

ordinal, interval, and ratio could be combined with any of the types based on the number of 

attribute values-binary, discrete, and continuous. However, some combinations occur only 

infrequently or do not make much sense.  

For instance, it is difficult to think of a realistic data set that contains a continuous binary 

attribute. Typically, nominal and ordinal attributes are binary or discrete, while interval and 

ratio attributes are continuous. However, count attributes, which are discrete, are also ratio 

attributes. 

 

Asymmetric Attributes 

For asymmetric attributes, only presence a non-zero attribute value-is regarded as important. 

Consider a data set where each object is a student and each attribute records whether or not a 

student took a particular course at a university. For a specific student, an attribute has a value 

of 1 if the student took the course associated with that attribute and a value of 0 otherwise. 

Because students take only a small fraction of all available courses, most of the values in such 

a data set would be 0. Therefore, it is more meaningful and more efficient to focus on the non-

zero values.  

To illustrate, if students are compared on the basis of the courses they don't take, then most 

students would seem very similar, at least if the number of courses is large. Binary attributes 

where only non-zero values are important are called asymmetric binary attributes. This type of 

attribute is particularly important for association analysis. It is also possible to have discrete or 

continuous asymmetric features. For instance, if the number of credits associated with each 

course is recorded, then the resulting data set will consist of asymmetric discrete or continuous 

attributes. 

 

Binary Attributes 

A binary attribute is a nominal attribute with only two categories or states: 0 or 1, where 0 

typically means that the attribute is absent, and 1 means that it is present. Binary attributes are 

referred to as Boolean if the two states correspond to true and false.  

Example 1 Binary attributes. Given the attribute smoker describing a patient object, 1 

indicates that the patient smokes, while 0 indicates that the patient does not. Similarly, suppose 

the patient undergoes a medical test that has two possible outcomes. The attribute medical test 

is binary, where a value of 1 means the result of the test for the patient is positive, while 0 

means the result is negative. 

A binary attribute is symmetric if both of its states are equally valuable and carry the same 

weight; that is, there is no preference on which outcome should be coded as 0 or 1. One such 

example could be the attribute gender having the states male and female. 



A binary attribute is asymmetric if the outcomes of the states are not equally important, such 

as the positive and negative outcomes of a medical test for HIV. By convention, we code the 

most important outcome, which is usually the rarest one, by 1 (e.g., HIV positive) and the other 

by 0 (e.g., HIV negative). 

Nominal Attributes 

Nominal means “relating to names.” The values of a nominal attribute are symbols or names 

of things. Each value represents some kind of category, code, or state, and so nominal attributes 

are also referred to as categorical. The values do not have any meaningful order. In computer 

science, the values are also known as enumerations. 

Example 1 Nominal attributes. Suppose that hair color and marital status are two attributes 

describing person objects. In our application, possible values for hair color are black, brown, 

blond, red, auburn, gray, and white. The attribute marital status can take on the values single, 

married, divorced, and widowed. Both hair color and marital status are nominal attributes. 

Another example of a nominal attribute is occupation, with the values teacher, dentist, 

programmer, farmer, and so on. 

Although we said that the values of a nominal attribute are symbols or “names of things,” it is 

possible to represent such symbols or “names” with numbers. With hair color, for instance, we 

can assign a code of 0 for black, 1 for brown, and so on.  

Another example is customor ID, with possible values that are all numeric. However, in such 

cases, the numbers are not intended to be used quantitatively. That is, mathematical operations 

on values of nominal attributes are not meaningful. It makes no sense to subtract one customer 

ID number from another, unlike, say, subtracting an age value from another (where age is a 

numeric attribute). Even though a nominal attribute may have integers as values, it is not 

considered a numeric attribute because the integers are not meant to be used quantitatively. 

Because nominal attribute values do not have any meaningful order about them and are not 

quantitative, it makes no sense to find the mean (average) value or median (middle) value for 

such an attribute, given a set of objects. One thing that is of interest, however, is the attribute’s 

most commonly occurring value. This value, known as the mode, is one of the measures of 

central tendency. 

Ordinal Attributes 

An ordinal attribute is an attribute with possible values that have a meaningful order or 

ranking among them, but the magnitude between successive values is not known. 

Example 1 Ordinal attributes. Suppose that drink size corresponds to the size of drinks 

available at a fast-food restaurant. This nominal attribute has three possible values: small, 

medium, and large. The values have a meaningful sequence (which corresponds to increasing 

drink size); however, we cannot tell from the values how much bigger, say, a medium is than a 

large. Other examples of ordinal attributes include grade and professional rank. Professional 



ranks can be enumerated in a sequential order: for example, assistant, associate, and full for 

professors, and private, private first class, specialist, corporal, and sergeant for army ranks. 

Ordinal attributes are useful for registering subjective assessments of qualities that cannot be 

measured objectively; thus ordinal attributes are often used in surveys for ratings. In one 

survey, participants were asked to rate how satisfied they were as customers. Customer 

satisfaction had the following ordinal categories: 0: very dissatisfied, 1: somewhat dissatisfied, 

2: neutral, 3: satisfied, and 4: very satisfied. 

Ordinal attributes may also be obtained from the discretization of numeric quantities by 

splitting the value range into a finite number of ordered categories as described in Chapter 3 

on data reduction. The central tendency of an ordinal attribute can be represented by its mode 

and its median (the middle value in an ordered sequence), but the mean cannot be defined.  

Note that nominal, binary, and ordinal attributes are qualitative. That is, they describe a feature 

of an object without giving an actual size or quantity. The values of such qualitative attributes 

are typically words representing categories. If integers are used, they represent computer codes 

for the categories, as opposed to measurable quantities (e.g., 0 for small drink size, 1 for 

medium, and 2 for large). 

Numeric Attributes 

A numeric attribute is quantitative; that is, it is a measurable quantity, represented in integer 

or real values. Numeric attributes can be interval-scaled or ratio-scaled. 

Interval-Scaled Attributes 

Interval-scaled attributes are measured on a scale of equal-size units. The values of interval-

scaled attributes have order and can be positive, 0, or negative. Thus, in addition to providing 

a ranking of values, such attributes allow us to compare and quantify the difference between 

values. 

Example 1 Interval-scaled attributes. A temperature attribute is interval-scaled. Suppose that 

we have the outdoor temperature value for a number of different days, where each day is an 

object. By ordering the values, we obtain a ranking of the objects with respect to temperature. 

In addition, we can quantify the difference between values. For example, a temperature of 20oC 

is five degrees higher than a temperature of 15oC. Calendar dates are another example. For 

instance, the years 2002 and 2010 are eight years apart. 

Temperatures in Celsius and Fahrenheit do not have a true zero-point, that is, neither 0oC nor 

0” F indicates “no temperature.” (On the Celsius scale, for example, the unit of measurement 

is 1/100 of the difference between the melting temperature and the boiling temperature of water 

in atmospheric pressure.) Although we can compute the difference between temperature values, 

we cannot talk of one temperature value as being a multiple of another. Without a true zero, we 

cannot say, for instance, that 10C is twice as warm as 5C. That is, we cannot speak of the values 

in terms of ratios. Similarly, there is no true zero-point for calendar dates. (The year 0 does not 



correspond to the beginning of time.) This brings us to ratio-scaled attributes, for which a true 

zero-point exits. 

Because interval-scaled attributes are numeric, we can compute their mean value, in addition 

to the median and mode measures of central tendency. 

Ratio-Scaled Attributes 

A ratio-scaled attribute is a numeric attribute with an inherent zero-point. That is, if a 

measurement is ratio-scaled, we can speak of a value as being a multiple (or ratio) of another 

value. In addition, the values are ordered, and we can also compute the difference between 

values, as well as the mean, median, and mode. 

Example: Ratio-scaled attributes. Unlike temperatures in Celsius and Fahrenheit, the Kelvin 

(K) temperature scale has what is considered a true zero-point  It is the 

point at which the particles that comprise matter have zero kinetic energy. Other examples of 

ratio-scaled attributes include count attributes such as years of experience (e.g., the objects are 

employees) and number of words (e.g., the objects are documents).  

Additional examples include attributes to measure weight, height, latitude and longitude 

coordinates (e.g., when clustering houses), and monetary quantities (e.g., you are 100 times 

richer with $100 than with $1). 

Discrete versus Continuous Attributes 

The attributes are organized as nominal, binary, ordinal, and numeric types. The types are not 

mutually exclusive. Classification algorithms developed from the field of machine learning 

often talk of attributes as being either discrete or continuous. Each type may be processed 

differently.  

A discrete attribute has a finite or countably infinite set of values, which may or may not be 

represented as integers. The attributes hair color, smoker, medical test, and drink size each 

have a finite number of values, and so are discrete. Note that discrete attributes may have 

numeric values, such as 0 and 1 for binary attributes or, the values 0 to 110 for the attribute 

age. An attribute is countably infinite if the set of possible values is infinite but the values can 

be put in a one-to-one correspondence with natural numbers. For example, the attribute 

customer ID is countably infinite. The number of customers can grow to infinity, but in reality, 

the actual set of values is countable (where the values can be put in one-to-one correspondence 

with the set of integers). Zip codes are another example. 

If an attribute is not discrete, it is continuous. The terms numeric attribute and continuous 

attribute are often used interchangeably in the literature. (This can be confusing because, in the 

classic sense, continuous values are real numbers, whereas numeric values can be either 

integers or real numbers.) In practice, real values are represented using a finite number of digits. 

Continuous attributes are typically represented as floating-point variables. 



Basic Statistical Descriptions of Data 

For data pre-processing to be successful, it is essential to have an overall picture of your data. 

Basic statistical descriptions can be used to identify properties of the data and highlight which 

data values should be treated as noise or outliers. 

This section discusses three areas of basic statistical descriptions. We start with measures of 

central tendency, which measure the location of the middle or center of a data distribution. 

Intuitively speaking, given an attribute, where do most of its values fall? In particular, we 

discuss the mean, median, mode, and midrange. In addition to assessing the central tendency 

of our data set, we also would like to have an idea of the dispersion of the data. That is, how 

are the data spread out? The most common data dispersion measures are the range, quartiles, 

and interquartile range; the five-number summary and boxplots; and the variance and standard 

deviation of the data. These measures are useful for identifying outliers. 

Finally, we can use many graphic displays of basic statistical descriptions to visually inspect 

our data. Most statistical or graphical data presentation software packages include bar charts, 

pie charts, and line graphs. Other popular displays of data summaries and distributions include 

quantile plots, quantile–quantile plots, histograms, and scatter plots. 

 

Measuring the Central Tendency: Mean, Median, and Mode 

In this section, we look at various ways to measure the central tendency of data. Suppose that 

we have some attribute X, like salary, which has been recorded for a set of objects. Let x1, 

x2,… ,xN be the set of N observed values or observations for X. Here, these values may also 

be referred to as the data set (for X). If we were to plot the observations for salary, where would 

most of the values fall? This gives us an idea of the central tendency of the data. Measures of 

central tendency include the mean, median, mode, and midrange. 

The most common and effective numeric measure of the “center” of a set of data is the 

(arithmetic) mean. Let x1,x2, … ,xN be a set of N values or observations, such as for some 

numeric attribute X, like salary. The mean of this set of values is 

 

This corresponds to the built-in aggregate function, average (avg() in SQL), provided in 

relational database systems. 

Example 1 Mean. Suppose we have the following values for salary (in thousands of dollars), 

shown in increasing order: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110. Using mean Eqation, 

we have 



 

Thus, the mean salary is $58,000. 

Sometimes, each value xi in a set may be associated with a weight wi for i D 1,….,N. The 

weights reflect the significance, importance, or occurrence frequency attached to their 

respective values. In this case, we can compute 

 

This is called the weighted arithmetic mean or the weighted average.  

Although the mean is the single most useful quantity for describing a data set, it is not always 

the best way of measuring the center of the data. A major problem with the mean is its 

sensitivity to extreme (e.g., outlier) values. Even a small number of extreme values can corrupt 

the mean. For example, the mean salary at a company may be substantially pushed up by that 

of a few highly paid managers.  

Similarly, the mean score of a class in an exam could be pulled down quite a bit by a few very 

low scores. To offset the effect caused by a small number of extreme values, we can instead 

use the trimmed mean, which is the mean obtained after chopping off values at the high and 

low extremes. For example, we can sort the values observed for salary and remove the top and 

bottom 2% before computing the mean. We should avoid trimming too large a portion (such 

as 20%) at both ends, as this can result in the loss of valuable information. For skewed 

(asymmetric) data, a better measure of the center of data is the median, which is the middle 

value in a set of ordered data values. It is the value that separates the higher half of a data set 

from the lower half. 

In probability and statistics, the median generally applies to numeric data; however, we may 

extend the concept to ordinal data. Suppose that a given data set of N values for an attribute X 

is sorted in increasing order. If N is odd, then the median is the middle value of the ordered set. 

If N is even, then the median is not unique; it is the two middlemost values and any value in 

between. If X is a numeric attribute in this case, by convention, the median is taken as the 

average of the two middlemost values. 

 



Example 2: Median. Let’s find the median of the data from Example 1. The data are already 

sorted in increasing order. There is an even number of observations (i.e., 12); therefore, the 

median is not unique. It can be any value within the two middlemost values of 52 and 56 (that 

is, within the sixth and seventh values in the list). By convention, we assign the average of the 

two middlemost values as the median; that is, Thus, the median is $54,000. 

Suppose that we had only the first 11 values in the list. Given an odd number of values, the 

median is the middlemost value. This is the sixth value in this list, which has a value of $52,000. 

The median is expensive to compute when we have a large number of observations. For 

numeric attributes, however, we can easily approximate the value. Assume that data are 

grouped in intervals according to their xi data values and that the frequency (i.e., number of 

data values) of each interval is known. For example, employees may be grouped according to 

their annual salary in intervals such as $10–20,000, $20–30,000, and so on. Let the interval that 

contains the median frequency be the median interval. 

We can approximate the median of the entire data set (e.g., the median salary) by interpolation 

using the formula  

 

where L1 is the lower boundary of the median interval, N is the number of values in the entire 

data set,  is the sum of the frequencies of all of the intervals that are lower than the 

median interval, freqmedian is the frequency of the median interval, and width is the width of the 

median interval. 

The mode is another measure of central tendency. The mode for a set of data is the value that 

occurs most frequently in the set. Therefore, it can be determined for qualitative and 

quantitative attributes. It is possible for the greatest frequency to correspond to several different 

values, which results in more than one mode. Data sets with one, two, or three modes are 

respectively called unimodal, bimodal, and trimodal. In general, a data set with two or more 

modes ismultimodal. At the other extreme, if each data value occurs only once, then there is 

no mode. 

Example 3: Mode. The data from Example 1 are bimodal. The two modes are $52,000 and 

$70,000. For unimodal numeric data that are moderately skewed (asymmetrical), we have the 

following empirical relation: 

 

This implies that the mode for unimodal frequency curves that are moderately skewed can 

easily be approximated if the mean and median values are known. The midrange can also be 

used to assess the central tendency of a numeric data set. It is the average of the largest and 



smallest values in the set. This measure is easy to compute using the SQL aggregate functions, 

max() and min(). 

Example 4: Midrange. The midrange of the data of Example 1 is  

In a unimodal frequency curve with perfect symmetric data distribution, the mean, median, 

and mode are all at the same center value, as shown in Figure 2.1(a). Data in most real 

applications are not symmetric. They may instead be either positively skewed, where the mode 

occurs at a value that is smaller than the median (Figure 2.1b), or negatively skewed, where 

the mode occurs at a value greater than the median (Figure 2.1c). 

 

 

Measuring the Dispersion of Data: Range, Quartiles, Variance, Standard Deviation, and 

Interquartile Range 

We now look at measures to assess the dispersion or spread of numeric data. The measures 

include range, quantiles, quartiles, percentiles, and the interquartile range. The five-number 

summary, which can be displayed as a boxplot, is useful in identifying outliers. Variance and 

standard deviation also indicate the spread of a data distribution. 

Range, Quartiles, and Interquartile Range 

To start off, let’s study the range, quantiles, quartiles, percentiles, and the interquartile range 

as measures of data dispersion. Let x1,x2, : : : ,xN be a set of observations for some numeric 

attribute, X. The range of the set is the difference between the largest (max()) and smallest 

(min()) values. Suppose that the data for attribute X are sorted in increasing numeric order. 

Imagine that we can pick certain data points so as to split the data distribution into equal-size 

consecutive sets, as in below Figure. These data points are called quantiles.  

Quantiles are points taken at regular intervals of a data distribution, dividing it into essentially 

equal size consecutive sets. (We say “essentially” because there may not be data values of X 

that divide the data into exactly equal-sized subsets. For readability, we will refer to them as 

equal.) The kth q-quantile for a given data distribution is the value x such that at most k=q of 



the data values are less than x and at most. (q-k)=q of the data values are more than x, where k 

is an integer such that 0 < k < q. There are q-1 q-quantiles. The 2-quantile is the data point 

dividing the lower and upper halves of the data distribution. It corresponds to the median. The 

4-quantiles are the three data points that split the data distribution into four equal parts; each 

part represents one-fourth of the data distribution. They are more commonly referred to as 

quartiles. The 100-quantiles are more commonly referred to as percentiles; they divide the 

data distribution into 100 equal-sized consecutive sets. The median, quartiles, and percentiles 

are the most widely used forms of quantiles. 

 

The quartiles give an indication of a distribution’s center, spread, and shape. The first quartile, 

denoted by Q1, is the 25th percentile. It cuts off the lowest 25% of the data. The third quartile, 

denoted by Q3, is the 75th percentile—it cuts off the lowest 75% (or highest 25%) of the data. 

The second quartile is the 50th percentile. As the median, it gives the center of the data 

distribution. 

The distance between the first and third quartiles is a simple measure of spread that gives the 

range covered by the middle half of the data. This distance is called the interquartile range 

(IQR) and is defined as 

 

Example 1: Interquartile range. The quartiles are the three values that split the sorted data set 

into four equal parts. The data contain 12 observations, already sorted in increasing order. Thus, 

the quartiles for this data are the third, sixth, and ninth values, respectively, in the sorted list. 

Therefore, Q1 = $47,000 and Q3 is $63,000. Thus, the interquartile range is IQR = 63 -47= 

$16,000. (Note that the sixth value is a median, $52,000, although this data set has two medians 

since the number of data values is even.) 

Five-Number Summary, Boxplots, and Outliers 



No single numeric measure of spread (e.g., IQR) is very useful for describing skewed 

distributions. Have a look at the symmetric and skewed data distributions of below Figure. In 

the symmetric distribution, the median (and other measures of central tendency) splits the data 

into equal-size halves. This does not occur for skewed distributions. Therefore, it is more 

informative to also provide the two quartiles Q1 and Q3, along with the median. A common 

rule of thumb for identifying suspected outliers is to single out values falling at least 1.5XIQR 

above the third quartile or below the first quartile. 

Because Q1, the median, and Q3 together contain no information about the endpoints (e.g., 

tails) of the data, a fuller summary of the shape of a distribution can be obtained by providing 

the lowest and highest data values as well. This is known as the five-number summary. The 

five-number summary of a distribution consists of the median (Q2), the quartiles Q1 and Q3, 

and the smallest and largest individual observations, written in the order of Minimum, Q1, 

Median, Q3, Maximum.  

Boxplots are a popular way of visualizing a distribution. A boxplot incorporates the five-

number summary as follows: 

 Typically, the ends of the box are at the quartiles so that the box length is the 

interquartile range. 

 The median is marked by a line within the box. 

 Two lines (called whiskers) outside the box extend to the smallest (Minimum) and 

largest (Maximum) observations. 

 

When dealing with a moderate number of observations, it is worthwhile to plot potential 

outliers individually. To do this in a boxplot, the whiskers are extended to the extreme low and 

high observations only if these values are less than 1.5 X IQR beyond the quartiles. Otherwise, 

the whiskers terminate at the most extreme observations occurring within 1.5 X IQR of the 

quartiles. The remaining cases are plotted individually. Boxplots can be used in the 

comparisons of several sets of compatible data. 



Example 2 Boxplot. Below Figure shows boxplots for unit price data for items sold at four 

branches of All Electronics during a given time period. For branch 1, we see that the median 

price of items sold is $80, Q1 is $60, and Q3 is $100. Notice that two outlying observations for 

this branch were plotted individually, as their values of 175 and 202 are more than 1.5 times 

the IQR here of 40. Boxplots can be computed in O.(n log n) time. Approximate boxplots can 

be computed in linear or sublinear time depending on the quality guarantee required.  

Variance and Standard Deviation 

Variance and standard deviation are measures of data dispersion. They indicate how spread out 

a data distribution is. A low standard deviation means that the data observations tend to be very 

close to the mean, while a high standard deviation indicates that the data are spread out over a 

large range of values. The variance of N observations, x1,x2, … ,xN, for a numeric attribute X 

is 

 

where x’ is the mean value of the observations, as defined in Eq. (2.1). The standard deviation, 

σ, of the observations is the square root of the variance, σ2. 

Example 3: Variance and standard deviation. From previous example, we found x’=$58,000 

using mean equation. To determine the variance and standard deviation of the data from that 

example,  

 

The basic properties of the standard deviation, σ, as a measure of spread are as follows: 

σ measures spread about the mean and should be considered only when the mean is chosen as 

the measure of center. σ = 0 only when there is no spread, that is, when all observations have 

the same value. Otherwise, σ > 0. 

 

Importantly, an observation is unlikely to be more than several standard deviations away from 

the mean. Mathematically, using Chebyshev’s inequality, it can be shown that at least 

 of the observations are no more than k standard deviations from the mean. 



Therefore, the standard deviation is a good indicator of the spread of a data set. The 

computation of the variance and standard deviation is scalable in large databases. 

 

Graphic Displays of Basic Statistical Descriptions of Data 

In this section, we study graphic displays of basic statistical descriptions. These include 

quantile plots, quantile–quantile plots, histograms, and scatter plots. Such graphs are helpful 

for the visual inspection of data, which is useful for data pre-processing. The first three of these 

show univariate distributions (i.e., data for one attribute), while scatter plots show bivariate 

distributions (i.e., involving two attributes). 

Quantile Plot 

In this and the following subsections, we cover common graphic displays of data distributions. 

A quantile plot is a simple and effective way to have a first look at a univariate data 

distribution. First, it displays all of the data for the given attribute (allowing the user to assess 

both the overall behavior and unusual occurrences). Second, it plots quantile information. Let 

xi , for i = 1 to N, be the data sorted in increasing order so that x1 is the smallest observation 

and xN is the largest for some ordinal or numeric attribute X. Each observation, xi , is paired 

with a percentage, fi , which indicates that approximately fi X 100% of the data are below the 

value, xi .We say “approximately” because there may not be a value with exactly a fraction, fi 

, of the data below xi . Note that the 0.25 percentile corresponds to quartile Q1, the 0.50 

percentile is the median, and the 0.75 percentile is Q3. 

 

These numbers increase in equal steps of 1/N, ranging from 
1

2𝑁
 1/2N (which is slightly above 

0) to 1-
1

2𝑁
 (which is slightly below 1). On a quantile plot, xi is graphed against fi . This allows 

us to compare different distributions based on their quantiles. For example, given the quantile 

plots of sales data for two different time periods, we can compare their Q1, median, Q3, and 

other fi values at a glance. 

Example 2.13 Quantile plot. Figure 2.4 shows a quantile plot for the unit price data of Table 

2.1. 



 

Quantile–Quantile Plot 

A quantile–quantile plot, or q-q plot, graphs the quantiles of one univariate distribution 

against the corresponding quantiles of another. It is a powerful visualization tool in that it 

allows the user to view whether there is a shift in going from one distribution to another. 

Suppose that we have two sets of observations for the attribute or variable unit price, taken 

from two different branch locations. Let x1, … ,xN be the data from the first branch, and y1, 

…. , yM be the data from the second, where each data set is sorted in increasing order. If M = 

N (i.e., the number of points in each set is the same), then we simply plot yi against xi , where 

yi and xi are both .(i -0.5)/N quantiles of their respective data sets. If M < N (i.e., the second 

branch has fewer observations than the first), there can be only M points on the q-q plot. Here, 

yi is the .(i -0.5)=M quantile of the y data, which is plotted against the .(i -0.5)=M quantile of 

the x data. This computation typically involves interpolation. 

Example 1: Quantile–quantile plot. Below figure shows a quantile–quantile plot for unit price 

data of items sold at two branches of AllElectronics during a given time period. Each point 

corresponds to the same quantile for each data set and shows the unit price of items sold at 

branch 1 versus branch 2 for that quantile. (To aid in comparison, the straight line represents 

the case where, for each given quantile, the unit price at each branch is the same. 

The darker points correspond to the data for Q1, the median, and Q3, respectively.) We see, 

for example, that at Q1, the unit price of items sold at branch 1 was slightly less than that at 

branch 2. In other words, 25% of items sold at branch 1 were less than or equal to $60, while 

25% of items sold at branch 2 were less than or equal to $64. At the 50th percentile (marked 

by the median, which is also Q2), we see that 50% of items sold at branch 1 were less than $78, 

while 50% of items at branch 2 were less than $85. 

In general, we note that there is a shift in the distribution of branch 1 with respect to branch 2 

in that the unit prices of items sold at branch 1 tend to be lower than those at branch 2.  



 

 

Histograms 

Histograms (or frequency histograms) are at least a century old and are widely used. “Histos” 

means pole or mast, and “gram” means chart, so a histogram is a chart of poles. Plotting 

histograms is a graphical method for summarizing the distribution of a given attribute, X. If X 

is nominal, such as automobile model or item type, then a pole or vertical bar is drawn for each 

known value of X. The height of the bar indicates the frequency (i.e., count) of that X value. 

The resulting graph is more commonly known as a bar chart.  

If X is numeric, the term histogram is preferred. The range of values for X is partitioned into 

disjoint consecutive subranges. The subranges, referred to as buckets or bins, are disjoint 

subsets of the data distribution for X. The range of a bucket is known as the width. Typically, 

the buckets are of equal width. For example, a price attribute with a value range of $1 to $200 

(rounded up to the nearest dollar) can be partitioned into subranges 1 to 20, 21 to 40, 41 to 60, 



and so on. For each subrange, a bar is drawn with a height that represents the total count of 

items observed within the subrange. Histograms and partitioning rules are further discussed in 

Chapter 3 on data reduction. 

Example 1: Histogram. Below figure shows a histogram for the data set of Table 2.1, where 

buckets (or bins) are defined by equal-width ranges representing $20 increments and the 

frequency is the count of items sold. 

Although histograms are widely used, they may not be as effective as the quantile plot, q-q 

plot, and boxplot methods in comparing groups of univariate observations. 

 

Scatter Plots and Data Correlation 

A scatter plot is one of the most effective graphical methods for determining if there appears 

to be a relationship, pattern, or trend between two numeric attributes. To construct a scatter 

plot, each pair of values is treated as a pair of coordinates in an algebraic sense and plotted as 

points in the plane. Below figure shows a scatter plot for the set of data in Table 2.1. 

The scatter plot is a useful method for providing a first look at bivariate data to see clusters of 

points and outliers, or to explore the possibility of correlation relationships. Two attributes, X, 

and Y, are correlated if one attribute implies the other. Correlations can be positive, negative, 

or null (uncorrelated). Below figure shows examples of positive and negative correlations 

between two attributes.  



 

 

If the plotted points pattern slopes from lower left to upper right, this means that the values of 

X increase as the values of Y increase, suggesting a positive correlation. If the pattern of plotted 

points slopes from upper left to lower right, the values of X increase as the values of Y decrease, 

suggesting a negative correlation. A line of best fit can be drawn to study the correlation 

between the variables. The above figure shows three cases for which there is no correlation 

relationship between the two attributes in each of the given data sets.  

In conclusion, basic data descriptions (e.g., measures of central tendency and measures of 

dispersion) and graphic statistical displays (e.g., quantile plots, histograms, and scatter plots) 



provide valuable insight into the overall behavior of your data. By helping to identify noise and 

outliers, they are especially useful for data cleaning. 

 

 



R - Vectors 
Vectors in R are the same as the arrays in C language which are used to hold multiple data 

values of the same type. One major key point is that in R the indexing of the vector will start 

from ‘1’ and not from ‘0’. We can create numeric vectors and character vectors as well. 

 

 

Vector Creation 
Single Element Vector 

Even when you write just one value in R, it becomes a vector of length 1 and belongs to one of 

the above vector types. 

 

# Atomic vector of type character. 

print("abc"); 

# Atomic vector of type double. 

print(12.5) 

# Atomic vector of type integer. 

print(63L) 

# Atomic vector of type logical. 

print(TRUE) 

# Atomic vector of type complex. 

print(2+3i) 

# Atomic vector of type raw. 

print(charToRaw('hello')) 



 

Multiple Elements Vector 

Using colon operator with numeric data 

# Creating a sequence from 5 to 13. 

v <- 5:13 

print(v) 

 

# Creating a sequence from 6.6 to 12.6. 

v <- 6.6:12.6 

print(v) 

# If the final element specified does not belong to the sequence then it is discarded. 

v <- 3.8:11.4 

print(v) 

 

Using sequence (Seq.) operator 

# Create vector with elements from 5 to 9 incrementing by 0.4. 

print(seq(5, 9, by = 0.4)) 

 

When we execute the above code, it produces the following result − 

[1] 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0 

 

Using the c() function 

The non-character values are coerced to character type if one of the elements is a character. 

# The logical and numeric values are converted to characters. 

s <- c('apple','red',5,TRUE) 

print(s) 

When we execute the above code, it produces the following result − 

[1] "apple" "red"   "5"     "TRUE" 

 



Accessing Vector Elements 

Elements of a Vector are accessed using indexing. The [ ] brackets are used for indexing. 

Indexing starts with position 1. Giving a negative value in the index drops that element from 

result.TRUE, FALSE or 0 and 1 can also be used for indexing. 

# Accessing vector elements using position. 

t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat") 

u <- t[c(2,3,6)] 

print(u) 

 

# Accessing vector elements using logical indexing. 

v <- t[c(TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE)] 

print(v) 

 

# Accessing vector elements using negative indexing. 

x <- t[c(-2,-5)] 

print(x) 

 

# Accessing vector elements using 0/1 indexing. 

y <- t[c(0,0,0,0,0,0,1)] 

print(y) 

 

When we execute the above code, it produces the following result − 

 

[1] "Mon" "Tue" "Fri" 

[1] "Sun" "Fri" 

[1] "Sun" "Tue" "Wed" "Fri" "Sat" 

[1] "Sun" 

 

 

 

 



Vector Manipulation 

Vector arithmetic 

Two vectors of same length can be added, subtracted, multiplied or divided giving the result 

as a vector output. 

# Create two vectors. 

v1 <- c(3,8,4,5,0,11) 

v2 <- c(4,11,0,8,1,2) 

 

# Vector addition. 

add.result <- v1+v2 

print(add.result) 

 

# Vector subtraction. 

sub.result <- v1-v2 

print(sub.result) 

 

# Vector multiplication. 

multi.result <- v1*v2 

print(multi.result) 

 

# Vector division. 

divi.result <- v1/v2 

print(divi.result) 

 

Vector Element Recycling 

If we apply arithmetic operations to two vectors of unequal length, then the elements of the 

shorter vector are recycled to complete the operations. 

v1 <- c(3,8,4,5,0,11) 

v2 <- c(4,11) 

# V2 becomes c(4,11,4,11,4,11) 

 



add.result <- v1+v2 

print(add.result) 

 

sub.result <- v1-v2 

print(sub.result) 

 

Vector Element Sorting 

Elements in a vector can be sorted using the sort() function. 

v <- c(3,8,4,5,0,11, -9, 304) 

 

# Sort the elements of the vector. 

result <- sort(v) 

print(result) 

 

# Sort the elements in the reverse order. 

result <- sort(v, decreasing = TRUE) 

print(result) 

 

# Sorting character vectors. 

v <- c("Red","Blue","yellow","violet") 

result <- sort(v) 

print(result) 

 

# Sorting character vectors in reverse order 

result <- sort(v, decreasing = TRUE) 

print(result) 

 

 

Types of vectors 

Vectors are of different types which are used in R. Following are some of the types of 

vectors: 



 Numeric vectors 
Numeric vectors are those which contain numeric values such as integer, float, etc. 

# R program to create numeric Vectors 

  # creation of vectors using c() function. 

v1 <- c(4, 5, 6, 7) 

  # display type of vector 

typeof(v1) 

   

# by using 'L' we can specify that we want integer values. 

v2 <- c(1L, 4L, 2L, 5L)  

  # display type of vector 

typeof(v2) 

Output: 
[1] "double" 

[1] "integer" 

 Character vectors 
Character vectors contain alphanumeric values and special characters. 

# R program to create Character Vectors 

  # by default numeric values  

# are converted into characters 

v1 <- c('geeks', '2', 'hello', 57)  

  # Displaying type of vector 

typeof(v1) 

Output: 
[1] "character" 

 Logical vectors 
Logical vectors contain boolean values such as TRUE, FALSE and NA for Null 

values. 

# R program to create Logical Vectors 

  # Creating logical vector 

# using c() function 

v1 <- c(TRUE, FALSE, TRUE, NA) 



  # Displaying type of vector 

typeof(v1) 

 Output: 
[1] "logical" 

 

 

Modifying a vector 

Modification of a Vector is the process of applying some operation on an individual element 

of a vector to change its value in the vector. There are different ways through which we can 

modify a vector: 

X <- c(2, 7, 9, 7, 8, 2) 

  # modify a specific element 

X[3] <- 1 

X[2] <-9 

cat('subscript operator', X, '\n') 

 # Modify using different logics. 

X[X>5] <- 0 

cat('Logical indexing', X, '\n') 

 # Modify by specifying  

# the position or elements. 

X <- X[c(3, 2, 1)] 

cat('combine() function', X) 

Output 
subscript operator 2 9 1 7 8 2  



Logical indexing 2 0 1 0 0 2  

combine() function 1 0 2 

 

Deleting a vector 

Deletion of a Vector is the process of deleting all of the elements of the vector. This can be 

done by assigning it to a NULL value. 

M <- c(8, 10, 2, 5) 

# set NULL to the vector 

M <- NULL  

cat('Output vector', M) 

Output: 
Output vector NULL 

 

Sorting elements of a Vector 

sort() function is used with the help of which we can sort the values in ascending or 

descending order. 

# R program to sort elements of a Vector 

   

# Creation of Vector 

X <- c(8, 2, 7, 1, 11, 2) 

   

# Sort in ascending order 

A <- sort(X) 

cat('ascending order', A, '\n') 

# sort in descending order  

# by setting decreasing as TRUE 

B <- sort(X, decreasing = TRUE) 



cat('descending order', B) 

Output: 
ascending order 1  2  2  7  8 11 

descending order 11  8  7  2  2  1 

 

Creating named vectors 

Named vector can be created in several ways. With c : 

xc <- c('a' = 5, 'b' = 6, 'c' = 7, 'd' = 8) 

which results in: 

> xc 

a b c d  

5 6 7 8 

 

With the setNames  function, two vectors of the same length can be used to create a named 

vector: 

x <- 5:8 

y <- letters[1:4] 

 

xy <- setNames(x, y) 

which results in a named integer vector: 

> xy 

a b c d  

5 6 7 8 

 

You may also use the names  function to get the same result: 

xy <- 5:8 

names(xy) <- letters[1:4] 

#With such a vector it is also possibly to select elements by name: 

  xy["a"] 

 

Vector sub-setting 

In R Programming Language, subsetting allows the user to access elements from an object. It 

takes out a portion from the object based on the condition provided. 



Method 1: Subsetting in R Using [ ] Operator 

Using the ‘[ ]’ operator, elements of vectors and observations from data frames can be 

accessed. To neglect some indexes, ‘-‘ is used to access all other indexes of vector or data 

frame. 

x <- 1:15 

# Print vector 

cat("Original vector: ", x, "\n") 

 # Subsetting vector 

cat("First 5 values of vector: ", x[1:5], "\n") 

 cat("Without values present at index 1, 2 and 3: ",  x[-c(1, 2, 3)], "\n") 

 

Method 4: Subsetting in R Using subset() Function 

subset() function in R programming is used to create a subset of vectors, matrices, or data 

frames based on the conditions provided in the parameters. 

q <- subset(airquality, Temp < 65, select = c(Month)) 

print(q) 

 

Matrices 

Matrix is a rectangular arrangement of numbers in rows and columns. In a matrix, as we 

know rows are the ones that run horizontally and columns are the ones that run vertically. 

Creating and Naming a Matrix 

To create a matrix in R you need to use the function called matrix(). The arguments to 

this matrix() are the set of elements in the vector. You have to pass how many numbers of 

rows and how many numbers of columns you want to have in your matrix. 

  

Note: By default, matrices are in column-wise order. 

 

A = matrix( 

      

  # Taking sequence of elements  

  c(1, 2, 3, 4, 5, 6, 7, 8, 9), 

    

  # No of rows 

  nrow = 3,   

    

  # No of columns 

  ncol = 3,         

    



  # By default matrices are in column-wise order 

  # So this parameter decides how to arrange the matrix 

  byrow = TRUE          

) 

   

# Naming rows 

rownames(A) = c("r1", "r2", "r3") 

   

# Naming columns 

colnames(A) = c("c1", "c2", "c3") 

   

cat("The 3x3 matrix:\n") 

print(A) 

 

Creating special matrices 

R allows creation of various different types of matrices with the use of arguments passed to 

the matrix() function. 

  

 Matrix where all rows and columns are filled by a single constant ‘k’:  

To create such a matrix the syntax is given below: 

 

Syntax: matrix(k, m, n) 

Parameters:  

k: the constant  

m: no of rows  

n: no of columns  

 

print(matrix(5, 3, 3)) 

Diagonal matrix:  

A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero. To 

create such a matrix the syntax is given below: 

print(diag(c(5, 3, 3), 3, 3)) 

Identity matrix:  

A square matrix in which all the elements of the principal diagonal are ones and all other 

elements are zeros. To create such a matrix the syntax is given below: 

print(diag(1, 3, 3)) 

Matrix metrics 

Matrix metrics mean once a matrix is created then  

  

 How can you know the dimension of the matrix? 

 How can you know how many rows are there in the matrix? 

 How many columns are in the matrix? 



 How many elements are there in the matrix? are the questions we generally wanted to 

answer. 

A = matrix( 

  c(1, 2, 3, 4, 5, 6, 7, 8, 9), 

  nrow = 3,             

  ncol = 3,             

  byrow = TRUE          

) 

cat("The 3x3 matrix:\n") 

print(A) 

  

cat("Dimension of the matrix:\n") 

print(dim(A)) 

  

cat("Number of rows:\n") 

print(nrow(A)) 

  

cat("Number of columns:\n") 

print(ncol(A)) 

  

cat("Number of elements:\n") 

print(length(A)) 

# OR 

print(prod(dim(A))) 

 

Matrix subsetting 

A matrix is subset with two arguments within single brackets, [], and separated by a comma. 

The first argument specifies the rows, and the second the columns. 

 

M_new<-matrix(c(25,23,25,20,15,17,13,19,25,24,21,19,20,12,30,17),ncol=4) 

 

#M_new<-matrix(1:16,4) 

 



M_new 

colnames(M_new)<-c("C1","C2","C3","C4") 

rownames(M_new)<-c("R1","R2","R3","R4") 

 

M_new[,1,drop=FALSE] # all rows with 1st column 

 

M_new[1,,drop=FALSE] #1st row with all column 

 

M_new[1,1,drop=FALSE] #display 1st row and 1st column, cell value 

 

M_new[1:2,2:3]#display 1st ,2nd  rows and 2nd ,3rd  column 

 

M_new[1:2,c(2,4)] #display 1st ,2nd  rows and 2nd ,4th  column 

 

 

Arrays 

Arrays are the R data objects which can store data in more than two dimensions. For example 

− If we create an array of dimension (2, 3, 4) then it creates 4 rectangular matrices each with 2 

rows and 3 columns. Arrays can store only data type. 

 

An array is created using the array() function. It takes vectors as input and uses the values in 

the dim parameter to create an array. 

Example 

The following example creates an array of two 3x3 matrices each with 3 rows and 3 columns. 

 

# Create two vectors of different lengths. 

vector1 <- c(5,9,3) 

vector2 <- c(10,11,12,13,14,15) 

 

# Take these vectors as input to the array. 

result <- array(c(vector1,vector2),dim = c(3,3,2)) 

print(result) 

 

Naming Columns and Rows 

We can give names to the rows, columns and matrices in the array by using the dimnames 

parameter. 



# Create two vectors of different lengths. 

vector1 <- c(5,9,3) 

vector2 <- c(10,11,12,13,14,15) 

column.names <- c("COL1","COL2","COL3") 

row.names <- c("ROW1","ROW2","ROW3") 

matrix.names <- c("Matrix1","Matrix2") 

 

# Take these vectors as input to the array. 

result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames = list(row.names,column.names, 

   matrix.names)) 

print(result) 

 

Accessing arrays 

The arrays can be accessed by using indices for different dimensions separated by commas. 

Different components can be specified by any combination of elements’ names or positions. 

 

Accessing Uni-Dimensional Array 

The elements can be accessed by using indexes of the corresponding elements. 

 

vec <- c(1:10) 

   

# accessing entire vector 

cat ("Vector is : ", vec) 

   

# accessing elements 

cat ("Third element of vector is : ", vec[3]) 

 

Accessing Array Elements 

# Create two vectors of different lengths. 

vector1 <- c(5,9,3) 

vector2 <- c(10,11,12,13,14,15) 



column.names <- c("COL1","COL2","COL3") 

row.names <- c("ROW1","ROW2","ROW3") 

matrix.names <- c("Matrix1","Matrix2") 

 

# Take these vectors as input to the array. 

result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames = list(row.names, 

   column.names, matrix.names)) 

 

# Print the third row of the second matrix of the array. 

print(result[3,,2]) 

 

# Print the element in the 1st row and 3rd column of the 1st matrix. 

print(result[1,3,1]) 

 

# Print the 2nd Matrix. 

print(result[,,2]) 

 

Calculations across Array Elements 

We can do calculations across the elements in an array using the apply() function. 

Syntax 

apply(x, margin, fun) 

Following is the description of the parameters used − 

 x is an array. 

 margin is the name of the data set used. 

 fun is the function to be applied across the elements of the array. 

Example 

We use the apply() function below to calculate the sum of the elements in the rows of an array 

across all the matrices. 

# Create two vectors of different lengths. 

vector1 <- c(5,9,3) 

vector2 <- c(10,11,12,13,14,15) 

 

# Take these vectors as input to the array. 



new.array <- array(c(vector1,vector2),dim = c(3,3,2)) 

print(new.array) 

 

# Use apply to calculate the sum of the rows across all the matrices. 

result <- apply(new.array, c(1), sum) 

print(result) 

When we execute the above code, it produces the following result − 

 

, , 1 

[,1] [,2] [,3] 

[1,]    5   10   13 

[2,]    9   11   14 

[3,]    3   12   15 

, , 2 

[,1] [,2] [,3] 

[1,]    5   10   13 

[2,]    9   11   14 

[3,]    3   12   15 

 

[1] 56 68 60 

Accessing subset of array elements 

A smaller subset of the array elements can be accessed by defining a range of row or column 

limits. 

 

row_names <- c("row1", "row2") 

col_names <- c("col1", "col2", "col3", "col4") 

mat_names <- c("Mat1", "Mat2") 

arr = array(1:15, dim = c(2, 4, 2),  

      dimnames = list(row_names, col_names, mat_names)) 

   

# print elements of both the rows and columns 2 and 3 of matrix 1 



print (arr[, c(2, 3), 1]) 

 

Adding elements to array 

Elements can be appended at the different positions in the array. The sequence of elements is 

retained in order of their addition to the array. The time complexity required to add new 

elements is O(n) where n is the length of the array. The length of the array increases by the 

number of element additions. There are various in-built functions available in R to add new 

values: 

 

c(vector, values): c() function allows us to append values to the end of the array. Multiple 

values can also be added together. 

append(vector, values): This method allows the values to be appended at any position in the 

vector. By default, this function adds the element at end. 

append(vector, values, after=length(vector)) adds new values after specified length of the 

array specified in the last argument of the function. 

 

Using the length function of the array: 

Elements can be added at length+x indices where x>0. 

# creating a uni-dimensional array 

x <- c(1, 2, 3, 4, 5) 

   

# addition of element using c() function 

x <- c(x, 6) 

print ("Array after 1st modification ") 

print (x) 

   

# addition of element using append function 

x <- append(x, 7) 

print ("Array after 2nd modification ") 

print (x) 

    

# adding elements after computing the length 

len <- length(x) 



x[len + 1] <- 8 

print ("Array after 3rd modification ") 

print (x) 

   

# adding on length + 3 index 

x[len + 3]<-9 

print ("Array after 4th modification ") 

print (x) 

   

# append a vector of values to the array after length + 3 of array 

print ("Array after 5th modification") 

x <- append(x, c(10, 11, 12), after = length(x)+3) 

print (x) 

   

# adds new elements after 3rd index 

print ("Array after 6th modification") 

x <- append(x, c(-1, -1), after = 3) 

print (x) 

[1] "Array after 1st modification " 

[1] 1 2 3 4 5 6 

[1] "Array after 2nd modification " 

[1] 1 2 3 4 5 6 7 

[1] "Array after 3rd modification " 

[1] 1 2 3 4 5 6 7 8 

[1] "Array after 4th modification " 

[1]  1  2  3  4  5  6  7  8 NA  9 

[1] "Array after 5th modification" 

[1]  1  2  3  4  5  6  7  8 NA  9 10 11 12 

[1] "Array after 6th modification" 

[1]  1  2  3 -1 -1  4  5  6  7  8 NA  9 10 11 12 



 

Removing Elements from Array 

Elements can be removed from arrays in R, either one at a time or multiple together. These 

elements are specified as indexes to the array, wherein the array values satisfying the conditions 

are retained and rest removed. The comparison for removal is based on array values. Multiple 

conditions can also be combined together to remove a range of elements. Another way to 

remove elements is by using %in% operator wherein the set of element values belonging to the 

TRUE values of the operator are displayed as result and the rest are removed. 

 

# creating an array of length 9 

m <- c(1, 2, 3, 4, 5, 6, 7, 8, 9) 

print ("Original Array") 

print (m) 

           

# remove a single value element:3 from array 

m <- m[m != 3] 

print ("After 1st modification") 

print (m) 

Class in R 

Class is the blueprint that helps to create an object and contains its member variable along with 

the attributes. As discussed earlier in the previous section, there are two classes of R, S3, and 

S4. 

S3 Class 

 S3 class is somewhat primitive in nature. It lacks a formal definition and object of this class 

can be created simply by adding a class attribute to it. 

 This simplicity accounts for the fact that it is widely used in R programming language. In 

fact most of the R built-in classes are of this type. 

Example 1: S3 class 

 # create a list with required components 

s <- list(name = "John", age = 21, GPA = 3.5) 

# name the class appropriately 

class(s) <- "student" 

 

S4 Class 



 S4 class are an improvement over the S3 class. They have a formally defined structure 

which helps in making object of the same class look more or less similar. 

 Class components are properly defined using the setClass() function and objects are created 

using the new() function. 

Example 2: S4 class 

< setClass("student", slots=list(name="character", age="numeric", GPA="numeric")) 

 

Reference Class 

 Reference class were introduced later, compared to the other two. It is more similar to the 

object oriented programming we are used to seeing in other major programming languages. 

 Reference classes are basically S4 classed with an environment added to it. 

Example 3: Reference class 

< setRefClass("student") 

 

Factors 

Introduction to Factors: 

Factors in R Programming Language are data structures that are implemented to categorize the 

data or represent categorical data and store it on multiple levels.  

 

They can be stored as integers with a corresponding label to every unique integer. Though 

factors may look similar to character vectors, they are integers and care must be taken while 

using them as strings. The factor accepts only a restricted number of distinct values. For 

example, a data field such as gender may contain values only from female, male. 

Creating a Factor in R Programming Language 

 The command used to create or modify a factor in R language is – factor() with a vector as 

input.  

The two steps to creating a factor are:   

 Creating a vector 

 Converting the vector created into a factor using function factor() 

 

Example: 

# Create a vector as input. 

data <- c("East","West","East","North","North","East","West","West","West","East","North") 

 

print(data) 



print(is.factor(data)) 

 

# Apply the factor function. 

factor_data <- factor(data) 

 

print(factor_data) 

print(is.factor(factor_data)) 

 

Changing the Order of Levels 

The order of the levels in a factor can be changed by applying the factor function again with 

new order of the levels. 

data <- c("East","West","East","North","North","East","West","West","West","East","North") 

# Create the factors 

factor_data <- factor(data) 

print(factor_data) 

 

# Apply the factor function with required order of the level. 

new_order_data <- factor(factor_data,levels = c("East","West","North")) 

print(new_order_data) 

 

Generating Factor Levels 

We can generate factor levels by using the gl() function. It takes two integers as input which 

indicates how many levels and how many times each level. 

Syntax 

gl(n, k, labels) 

Following is the description of the parameters used − 

 n is a integer giving the number of levels. 

 k is a integer giving the number of replications. 

 labels is a vector of labels for the resulting factor levels. 

 

Example: 

v <- gl(3, 4, labels = c("A", "B","C")) 

print(v) 

 

Accessing elements of a Factor in R 

Like we access elements of a vector, the same way we access the elements of a factor. If gender 

is a factor then gender[i] would mean accessing ith element in the factor. 

Example: 



gender <- factor(c("female", "male", "male", "female")) 

gender[3] 

 

Summarizing a Factor 

The summary function in R returns the results of basic statistical calculations (minimum, 1st 

quartile, median, mean, 3rd quartile, and maximum) for a numerical vector. The general way 

to write the R summary function is summary(x, na.rm=FALSE/TRUE). Again, X refers to a 

numerical vector, while na.rm=FALSE/TRUE specifies whether to remove empty values from 

the calculation. 

Example: 

v <- gl(3, 4, labels = c("A", "B","C")) 

print(v) 

summary(v) 

 

Level Ordering of Factors 

Factors are data objects used to categorize data and store it as levels. They can store a string as 

well as an integer. They represent columns as they have a limited number of unique values. 

Factors in R can be created using factor() function. It takes a vector as input. c() function is 

used to create a vector with explicitly provided values. 

Example: 

x < - c("Pen", "Pencil", "Brush", "Pen", 

        "Brush", "Brush", "Pencil", "Pencil") 

  

print(x) 

print(is.factor(x)) 

  

# Apply the factor function. 

factor_x = factor(x) 

levels(factor_x) 

 

In the above code, x is a vector with 8 elements. To convert it to a factor the function factor() 

is used. Here there are 8 factors and 3 levels. Levels are the unique elements in the data. Can 

be found using levels() function. 

 

Ordering Factor Levels 

 

Ordered factors is an extension of factors. It arranges the levels in increasing order. We use 

two functions: factor() along with argument ordered(). 

 

Syntax:  factor(data, levels =c(“”), ordered =TRUE)  



 

Parameter:  

data: input vector with explicitly defined values. 

levels(): Mention the list of levels in c function. 

ordered: It is set true for enabling ordering. 

 

Example: 

 

size = c("small", "large", "large", "small","medium", "large", "medium", "medium") 

# converting to factor 

size_factor <- factor(size)                                      

print(size_factor) 

 

# ordering the levels 

ordered.size <- factor(size, levels = c("small", "medium", "large"), ordered = TRUE)  

print(ordered.size) 

In the above code, size vector is created using c function. Then it is converted to a factor. And 

for ordering factor() function is used along with the arguments described above. Thus the sizes 

arranged in order. 

 



Data Frames 

A data frame is a table or a two-dimensional array-like structure in which each column contains 

values of one variable and each row contains one set of values from each column. Data frames 

can also be interpreted as matrices where each column of a matrix can be of the different data 

types. 

Following are the characteristics of a data frame. 

 The column names should be non-empty. 

 The row names should be unique. 

 The data stored in a data frame can be of numeric, factor or character type. 

 Each column should contain same number of data items. 
 

Creating Data Frame 

friend.data <- data.frame( 

    friend_id = c(1:5), 

    friend_name = c("Sachin", "Sourav", 

                    "Dravid", "Sehwag", 

                    "Dhoni"), 

    ) 

# print the data frame 

print(friend.data) 

 

Output:  
      friend_id friend_name 

1         1      Sachin 

2         2      Sourav 

3         3      Dravid 

4         4      Sehwag 

5         5       Dhoni 

 

Summary of Data in Data Frame 

The statistical summary and nature of the data can be obtained by 

applying summary() function. 

# Create the data frame. 

emp.data <- data.frame( 

   emp_id = c (1:5),  



   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 

   salary = c(623.3,515.2,611.0,729.0,843.25),  

    

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", 

      "2015-03-27")), 

   stringsAsFactors = FALSE 

) 

# Print the summary. 

print(summary(emp.data))   

 

When we execute the above code, it produces the following result − 

     emp_id    emp_name             salary        start_date         

 Min.   :1   Length:5           Min.   :515.2   Min.   :2012-01-01   

 1st Qu.:2   Class :character   1st Qu.:611.0   1st Qu.:2013-09-23   

 Median :3   Mode  :character   Median :623.3   Median :2014-05-11   

 Mean   :3                      Mean   :664.4   Mean   :2014-01-14   

 3rd Qu.:4                      3rd Qu.:729.0   3rd Qu.:2014-11-15   

 Max.   :5                      Max.   :843.2   Max.   :2015-03-27  
 

Extract Data from Data Frame 

Extract specific column from a data frame using column name. 

# Create the data frame. 

emp.data <- data.frame( 

   emp_id = c (1:5), 

   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 

   salary = c(623.3,515.2,611.0,729.0,843.25), 

    

   start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-27")), 

) 

# Extract Specific columns. 

result <- data.frame(emp.data$emp_name,emp.data$salary) 

print(result) 

 

When we execute the above code, it produces the following result − 

  emp.data.emp_name emp.data.salary 



1              Rick          623.30 

2               Dan          515.20 

3          Michelle          611.00 

4              Ryan          729.00 

5              Gary          843.25 
 

 

Extract the first two rows and then all columns 

result <- emp.data[1:2,] 

 

Extract 3rd and 5th row with 2nd and 4th column 

result <- emp.data[c(3,5),c(2,4)] 

 

Expand Data Frame / Extending Data Frame 

A data frame can be expanded by adding columns and rows. 

 

Add Column 

Just add the column vector using a new column name. 

 

# Create the data frame. 

emp.data <- data.frame( 

   emp_id = c (1:5),  

   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 

   salary = c(623.3,515.2,611.0,729.0,843.25),  

    

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")), 

   stringsAsFactors = FALSE 

) 

 

# Add the "dept" coulmn. 

emp.data$dept <- c("IT","Operations","IT","HR","Finance") 

v <- emp.data 

print(v) 

 



When we execute the above code, it produces the following result − 

  emp_id   emp_name    salary    start_date       dept 

1     1    Rick        623.30    2012-01-01       IT 

2     2    Dan         515.20    2013-09-23       Operations 

3     3    Michelle    611.00    2014-11-15       IT 

4     4    Ryan        729.00    2014-05-11       HR 

5     5    Gary        843.25    2015-03-27       Finance 
 

Add Row 

To add more rows permanently to an existing data frame, we need to bring in the new rows in the 

same structure as the existing data frame and use the rbind() function. 

 

In the example below we create a data frame with new rows and merge it with the existing data frame 

to create the final data frame. 

 

# Create the first data frame. 

emp.data <- data.frame( 

   emp_id = c (1:5),  

   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 

   salary = c(623.3,515.2,611.0,729.0,843.25),  

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")), 

   dept = c("IT","Operations","IT","HR","Finance"), 

 ) 

 

# Create the second data frame 

emp.newdata <- data.frame( 

   emp_id = c (6:8),  

   emp_name = c("Rasmi","Pranab","Tusar"), 

   salary = c(578.0,722.5,632.8),  

   start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")), 

   dept = c("IT","Operations","Fianance"), 

) 

 

# Bind the two data frames. 

emp.finaldata <- rbind(emp.data,emp.newdata) 



print(emp.finaldata) 

 

Remove Rows and Columns 

Use the c() function to remove rows and columns in a Data Frame: 

Example 

Data_Frame <- data.frame ( 

  Training = c("Strength", "Stamina", "Other"), 

  Pulse = c(100, 150, 120), 

  Duration = c(60, 30, 45) 

) 

 

# Remove the first row and column 

Data_Frame_New <- Data_Frame[-c(1), -c(1)] 

 

# Print the new data frame 

Data_Frame_New 

 

Pulse Duration 

2   150       30 

3   120       45 
 

Create Subsets of a Data frame 

subset() function in R Programming Language is used to create subsets of a Data frame. This 

can also be used to drop columns from a data frame. 

 

emp.data <- data.frame( 

   emp_id = c (1:5),  

   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 

   salary = c(623.3,515.2,611.0,729.0,843.25),  

    

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-

03-27")), 

   ) 



emp.data 

 

subset(emp.data, emp_id == 3) 

 

subset(emp.data, emp_id == c(1:3)) 

 

  emp_id emp_name salary start_date 

1      1     Rick 623.30 2012-01-01 

2      2      Dan 515.20 2013-09-23 

3      3 Michelle 611.00 2014-11-15 

4      4     Ryan 729.00 2014-05-11 

5      5     Gary 843.25 2015-03-27 

  

 emp_id emp_name salary start_date 

3      3 Michelle    611 2014-11-15 

  

 emp_id emp_name salary start_date 

1      1     Rick  623.3 2012-01-01 

2      2      Dan  515.2 2013-09-23 

3      3 Michelle  611.0 2014-11-15 

 

Sorting Data 

To sort a data frame in R, use the order( ) function. By default, sorting is ASCENDING. 

Prepend the sorting variable by a minus sign to indicate DESCENDING order. Here are some 

examples. 

data = data.frame( 

  rollno = c(1, 5, 4, 2, 3), 

  subjects = c("java", "python", "php", "sql", "c")) 

 

print(data) 

print("sort the data in decreasing order based on subjects ") 

print(data[order(data$subjects, decreasing = TRUE), ]   ) 

     

print("sort the data in decreasing order based on rollno ") 

print(data[order(data$rollno, decreasing = TRUE), ]   ) 

 

Output: 



  rollno subjects 

1      1     java 

2      5   python 

3      4      php 

4      2      sql 

5      3        c 

[1] "sort the data in decreasing order based on subjects " 

  rollno subjects 

4      2      sql 

2      5   python 

3      4      php 

1      1     java 

5      3        c 

[1] "sort the data in decreasing order based on rollno " 

  rollno subjects 

2      5   python 

3      4      php 

5      3        c 

4      2      sql 

1      1     java 

 

Lists 
Lists are one-dimensional, heterogeneous data structures. The list can be a list of vectors, a 

list of matrices, a list of characters and a list of functions, and so on.  

A list is a vector but with heterogeneous data elements. A list in R is created with the use of 

list() function. R allows accessing elements of a list with the use of the index value. In R, the 

indexing of a list starts with 1 instead of 0 like other programming languages.   

 

Creating a List 

To create a List in R you need to use the function called “list()”. In other words, a list is a 

generic vector containing other objects. To illustrate how a list looks, we take an example 

here. We want to build a list of employees with the details. So for this, we want attributes 

such as ID, employee name, and the number of employees. 

 



empId = c(1, 2, 3, 4) 

   

empName = c("Debi", "Sandeep", "Subham", "Shiba") 

   

numberOfEmp = 4 

   

empList = list(empId, empName, numberOfEmp) 

   

print(empList) 

 

or 

list_data <- list("Red", "Green", c(21,32,11), TRUE, 51.23, 119.1) 

print(list_data) 

 

Accessing components of a list 

We can access components of a list in two ways.  

 

Access components by names: All the components of a list can be named and we can use 

those names to access the components of the list using the dollar command. 

 

empId = c(1, 2, 3, 4) 

empName = c("Debi", "Sandeep", "Subham", "Shiba") 

numberOfEmp = 4 

empList = list( 

  "ID" = empId, 

  "Names" = empName, 

  "Total Staff" = numberOfEmp 

  ) 

print(empList) 

  

# Accessing components by names 

cat("Accessing name components using $ command\n") 

print(empList$Names) 

 



Access components by indices: We can also access the components of the list using indices. 

To access the top-level components of a list we have to use a double slicing operator “[[ ]]” 

which is two square brackets and if we want to access the lower or inner level components of 

a list we have to use another square bracket “[ ]” along with the double slicing operator “[[ ]]“. 

empId = c(1, 2, 3, 4) 

empName = c("Debi", "Sandeep", "Subham", "Shiba") 

numberOfEmp = 4 

empList = list( 

  "ID" = empId, 

  "Names" = empName, 

  "Total Staff" = numberOfEmp 

  ) 

print(empList) 

  

# Accessing a top level components by indices 

cat("Accessing name components using indices\n") 

print(empList[[2]]) 

  

# Accessing a inner level components by indices 

cat("Accessing Sandeep from name using indices\n") 

print(empList[[2]][2]) 

  

# Accessing another inner level components by indices 

cat("Accessing 4 from ID using indices\n") 

print(empList[[1]][4]) 

 

Modifying components of a list 

A list can also be modified by accessing the components and replacing them with the ones 

which you want. 

empId = c(1, 2, 3, 4) 

empName = c("Debi", "Sandeep", "Subham", "Shiba") 

numberOfEmp = 4 



empList = list( 

  "ID" = empId, 

  "Names" = empName, 

  "Total Staff" = numberOfEmp 

) 

cat("Before modifying the list\n") 

print(empList) 

  

# Modifying the top-level component 

empList$`Total Staff` = 5 

  

# Modifying inner level component 

empList[[1]][5] = 5 

empList[[2]][5] = "Kamala" 

  

cat("After modified the list\n") 

print(empList) 

 

Merging list 

We can merge the list by placing all the lists into a single list. 

 

lst1 <- list(1,2,3) 

lst2 <- list("Sun","Mon","Tue") 

  

# Merge the two lists. 

new_list <- c(lst1,lst2) 

  

# Print the merged list. 

print(new_list) 

 

Deleting components of a list 

To delete components of a list, first of all, we need to access those components and then 

insert a negative sign before those components. It indicates that we had to delete that 

component. 



empId = c(1, 2, 3, 4) 

empName = c("Debi", "Sandeep", "Subham", "Shiba") 

numberOfEmp = 4 

empList = list( 

  "ID" = empId, 

  "Names" = empName, 

  "Total Staff" = numberOfEmp 

) 

cat("Before deletion the list is\n") 

print(empList) 

  

# Deleting a top level components 

cat("After Deleting Total staff components\n") 

print(empList[-3]) 

  

# Deleting a inner level components 

cat("After Deleting sandeep from name\n") 

print(empList[[2]][-2]) 

 

Converting List to Vector 

Here we are going to convert the list to vector, for this we will create a list first and then 

unlist the list into the vector. 

# Create lists. 

lst <- list(1:5) 

print(lst) 

  

# Convert the lists to vectors. 

vec <- unlist(lst) 

  

print(vec) 

 

 



 

Unit-4 

Conditionals and control flow 

R - Operators 

An operator is a symbol that tells the compiler to perform specific mathematical or logical 

manipulations. R language is rich in built-in operators and provides following types of 

operators. 

Types of Operators 

We have the following types of operators in R programming − 

 Arithmetic Operators 

 Relational Operators 

 Logical Operators 

 Assignment Operators 

 Miscellaneous Operators 

Arithmetic Operators 

Following table shows the arithmetic operators supported by R language. The operators act on 

each element of the vector. 

Operator Description Example 

+ Adds two vectors  

v <- c( 2,5.5,6) 

t <- c(8, 3, 4) 

print(v+t) 

it produces the following result − 

[1] 10.0 8.5 10.0 

− Subtracts second vector from the first v <- c( 2,5.5,6) 

t <- c(8, 3, 4) 

print(v-t) 

it produces the following result − 

[1] -6.0 2.5 2.0 

* Multiplies both vectors v <- c( 2,5.5,6) 

t <- c(8, 3, 4) 

print(v*t) 

it produces the following result − 



[1] 16.0 16.5 24.0 

/ Divide the first vector with the second v <- c( 2,5.5,6) 

t <- c(8, 3, 4) 

print(v/t) 

When we execute the above code, it 

produces the following result − 

[1] 0.250000 1.833333 1.500000 

%% Give the remainder of the first vector 

with the second 
v <- c( 2,5.5,6) 

t <- c(8, 3, 4) 

print(v%%t) 

it produces the following result − 

[1] 2.0 2.5 2.0 

%/% The result of division of first vector 

with second (quotient) 
v <- c( 2,5.5,6) 

t <- c(8, 3, 4) 

print(v%/%t) 

it produces the following result − 

[1] 0 1 1 

^ The first vector raised to the exponent 

of second vector 
v <- c( 2,5.5,6) 

t <- c(8, 3, 4) 

print(v^t) 

it produces the following result − 

[1] 256.000 166.375 1296.000 

 

Relational Operators 

Following table shows the relational operators supported by R language. Each element of the 

first vector is compared with the corresponding element of the second vector. The result of 

comparison is a Boolean value. 

Operator Description Example 

> 

Checks if each element of the first vector is 

greater than the corresponding element of 

the second vector. 

v <- c(2,5.5,6,9) 

t <- c(8,2.5,14,9) 

print(v>t) 

it produces the following result − 

[1] FALSE TRUE FALSE FALSE 



< 

Checks if each element of the first vector is 

less than the corresponding element of the 

second vector. 

v <- c(2,5.5,6,9) 

t <- c(8,2.5,14,9) 

print(v < t) 

it produces the following result − 

[1] TRUE FALSE TRUE FALSE 

== 

Checks if each element of the first vector is 

equal to the corresponding element of the 

second vector. 

v <- c(2,5.5,6,9) 

t <- c(8,2.5,14,9) 

print(v == t) 

it produces the following result − 

[1] FALSE FALSE FALSE TRUE 

<= 

Checks if each element of the first vector is 

less than or equal to the corresponding 

element of the second vector. 

v <- c(2,5.5,6,9) 

t <- c(8,2.5,14,9) 

print(v<=t) 

it produces the following result − 

[1] TRUE FALSE TRUE TRUE 

>= 

Checks if each element of the first vector is 

greater than or equal to the corresponding 

element of the second vector. 

v <- c(2,5.5,6,9) 

t <- c(8,2.5,14,9) 

print(v>=t) 

it produces the following result − 

[1] FALSE TRUE FALSE TRUE 

!= 

Checks if each element of the first vector is 

unequal to the corresponding element of the 

second vector. 

v <- c(2,5.5,6,9) 

t <- c(8,2.5,14,9) 

print(v!=t) 

it produces the following result − 

[1] TRUE TRUE TRUE FALSE 

 

Logical Operators 

Following table shows the logical operators supported by R language. It is applicable only to 

vectors of type logical, numeric or complex. All numbers greater than 1 are considered as 

logical value TRUE. 

Each element of the first vector is compared with the corresponding element of the second 

vector. The result of comparison is a Boolean value. 

Operator Description Example 



& It is called Element-wise Logical AND 

operator. It combines each element of the 

first vector with the corresponding element 

of the second vector and gives a output 

TRUE if both the elements are TRUE. 

v <- c(3,1,TRUE,2+3i) 

t <- c(4,1,FALSE,2+3i) 

print(v&t) 

it produces the following result − 

[1] TRUE TRUE FALSE TRUE 

| It is called Element-wise Logical OR 

operator. It combines each element of the 

first vector with the corresponding element 

of the second vector and gives a output 

TRUE if one the elements is TRUE. 

v <- c(3,0,TRUE,2+2i) 

t <- c(4,0,FALSE,2+3i) 

print(v|t) 

it produces the following result − 

[1] TRUE FALSE TRUE TRUE 

! 
It is called Logical NOT operator. Takes 

each element of the vector and gives the 

opposite logical value. 

v <- c(3,0,TRUE,2+2i) 

print(!v) 

it produces the following result − 

[1] FALSE TRUE FALSE FALSE 

The logical operator && and || considers only the first element of the vectors and give a vector 

of single element as output. 

Operator Description Example 

&& 

Called Logical AND operator. Takes first 

element of both the vectors and gives the 

TRUE only if both are TRUE. 

v <- c(3,0,TRUE,2+2i) 

t <- c(1,3,TRUE,2+3i) 

print(v&&t) 

it produces the following result − 

[1] TRUE 

|| 

Called Logical OR operator. Takes first 

element of both the vectors and gives the 

TRUE if one of them is TRUE. 

v <- c(0,0,TRUE,2+2i) 

t <- c(0,3,TRUE,2+3i) 

print(v||t) 

it produces the following result − 

[1] FALSE 

Assignment Operators 

These operators are used to assign values to vectors. 

Operator Description Example 

<− 
Called Left Assignment v1 <- c(3,1,TRUE,2+3i) 

v2 <<- c(3,1,TRUE,2+3i) 



or 

= 

or 

<<− 

v3 = c(3,1,TRUE,2+3i) 

print(v1) 

print(v2) 

print(v3) 

it produces the following result − 

[1] 3+0i 1+0i 1+0i 2+3i 

[1] 3+0i 1+0i 1+0i 2+3i 

[1] 3+0i 1+0i 1+0i 2+3i 

-> 

or 

->> 

Called Right Assignment c(3,1,TRUE,2+3i) -> v1 

c(3,1,TRUE,2+3i) ->> v2  

print(v1) 

print(v2) 

it produces the following result − 

[1] 3+0i 1+0i 1+0i 2+3i 

[1] 3+0i 1+0i 1+0i 2+3i 

Miscellaneous Operators 

These operators are used to for specific purpose and not general mathematical or logical 

computation. 

Operator Description Example 

: Colon 

operator. It 

creates the 

series of 

numbers in 

sequence 

for a vector. 

v <- 2:8 

print(v)  

it produces the following result − 

[1] 2 3 4 5 6 7 8 

%in% 
This 

operator is 

used to 

identify if 

an element 

belongs to a 

vector. 

v1 <- 8 

v2 <- 12 

t <- 1:10 

print(v1 %in% t)  

print(v2 %in% t)  

it produces the following result − 

[1] TRUE 

[1] FALSE 



%*% This 

operator is 

used to 

multiply a 

matrix with 

its 

transpose. 

M = matrix( c(2,6,5,1,10,4), nrow = 2,ncol = 3,byrow = TRUE) 

t = M %*% t(M) 

print(t) 

it produces the following result − 

[,1] [,2] 

[1,] 65 82 

[2,] 82 117 

 

 

R - Decision making / Conditional statement 

Decision making structures require the programmer to specify one or more conditions to be 

evaluated or tested by the program, along with a statement or statements to be executed if the 

condition is determined to be true, and optionally, other statements to be executed if the 

condition is determined to be false. 

Following is the general form of a typical decision making structure found in most of the 

programming languages − 

 

R provides the following types of decision making statements. Click the following links to 

check their detail. 

Sr.No. Statement & Description 

1 if statement 

An if statement consists of a Boolean expression followed by one or more statements. 



2 if...else statement 

An if statement can be followed by an optional else statement, which executes when the 

Boolean expression is false. 

3 switch statement 

A switch statement allows a variable to be tested for equality against a list of values. 

 

R - If Statement 

An if statement consists of a Boolean expression followed by one or more statements. 

Syntax 

The basic syntax for creating an if statement in R is − 

if(boolean_expression) { 

// statement(s) will execute if the boolean expression is true. 

} 

If the Boolean expression evaluates to be true, then the block of code inside the if statement 

will be executed. If Boolean expression evaluates to be false, then the first set of code after the 

end of the if statement (after the closing curly brace) will be executed. 

Flow Diagram 

 

Example 

x <- 30L 

if(is.integer(x)) { 

   print("X is an Integer") 

} 

When the above code is compiled and executed, it produces the following result − 



[1] "X is an Integer" 

 

R - If...Else Statement 

An if statement can be followed by an optional else statement which executes when the boolean 

expression is false. 

Syntax 

The basic syntax for creating an if...else statement in R is − 

if(boolean_expression) { 

// statement(s) will execute if the boolean expression is true. 

} else { 

// statement(s) will execute if the boolean expression is false. 

} 

If the Boolean expression evaluates to be true, then the if block of code will be executed, 

otherwise else block of code will be executed. 

Flow Diagram 

 

Example 

x <- c("what","is","truth") 

 

if("Truth" %in% x) { 

   print("Truth is found") 

} else { 

   print("Truth is not found") 

} 

When the above code is compiled and executed, it produces the following result − 

[1] "Truth is not found" 

Here "Truth" and "truth" are two different strings. 



 

The if...else if...else Statement 

An if statement can be followed by an optional else if...else statement, which is very useful to 

test various conditions using single if...else if statement. 

When using if, else if, else statements there are few points to keep in mind. 

 An if can have zero or one else and it must come after any else if's. 

 An if can have zero to many else if's and they must come before the else. 

 Once an else if succeeds, none of the remaining else if's or else's will be tested. 

Syntax 

The basic syntax for creating an if...else if...else statement in R is − 

if(boolean_expression 1) { 

// Executes when the boolean expression 1 is true. 

} else if( boolean_expression 2) { 

// Executes when the boolean expression 2 is true. 

} else if( boolean_expression 3) { 

// Executes when the boolean expression 3 is true. 

} else { 

// executes when none of the above condition is true. 

} 

Example 

x <- c("what","is","truth") 

 

if("Truth" %in% x) { 

   print("Truth is found the first time") 

} else if ("truth" %in% x) { 

   print("truth is found the second time") 

} else { 

   print("No truth found") 

} 

When the above code is compiled and executed, it produces the following result − 

[1] "truth is found the second time" 

 

Nested If Statements 

You can also have if statements inside if statements, this is called nested if statements. 

Example 

x <- 41 

 

if (x > 10) { 

  print("Above ten") 

  if (x > 20) { 

    print("and also above 20!") 

  } else { 



    print("but not above 20.") 

  } 

} else { 

  print("below 10.") 

} 

AND 

The & symbol (and) is a logical operator, and is used to combine conditional statements: 

Example 

Test if a is greater than b, AND if c is greater than a: 

a <- 200 

b <- 33 

c <- 500 

 

if (a > b & c > a){ 

  print("Both conditions are true") 

} 

OR 

The | symbol (or) is a logical operator, and is used to combine conditional statements: 

Example 

Test if a is greater than b, or if c is greater than a: 

a <- 200 

b <- 33 

c <- 500 

 

if (a > b | a > c){ 

  print("At least one of the conditions is true") 

} 

 

R - Switch Statement 

A switch statement allows a variable to be tested for equality against a list of values. Each 

value is called a case, and the variable being switched on is checked for each case. 

Syntax 

The basic syntax for creating a switch statement in R is − 

switch(expression, case1, case2, case3....) 

The following rules apply to a switch statement − 



 If the value of expression is not a character string it is coerced to integer. 

 You can have any number of case statements within a switch.  

 If the value of the integer is between 1 and nargs()−1 (The max number of 

arguments)then the corresponding element of case condition is evaluated and the result 

returned. 

 If expression evaluates to a character string then that string is matched (exactly) to the 

names of the elements. 

 If there is more than one match, the first matching element is returned. 

 No Default argument is available. 

 In the case of no match, if there is a unnamed element of ... its value is returned.  

Flow Diagram 

 

Example 

x <- switch( 

   3, 

   "first", 

   "second", 

   "third", 

   "fourth" 

) 

print(x) 

When the above code is compiled and executed, it produces the following result − 

[1] "third" 

 

Example 2: 

 

# Following is val1 simple R program   



# to demonstrate syntax of switch. 

   

# Mathematical calculation 

   

val1 = 6   

val2 = 7 

val3 = "s"   

result = switch(   

    val3,   

    "a"= cat("Addition =", val1 + val2),   

    "d"= cat("Subtraction =", val1 - val2),   

    "r"= cat("Division = ", val1 / val2),   

    "s"= cat("Multiplication =", val1 * val2), 

    "m"= cat("Modulus =", val1 %% val2), 

    "p"= cat("Power =", val1 ^ val2) 

)   

     

print(result)   

 

Iterative Programming in R 

R - Loops 
 

Introduction: 

There may be a situation when you need to execute a block of code several number 
of times. In general, statements are executed sequentially. The first statement in a 
function is executed first, followed by the second, and so on. 

Programming languages provide various control structures that allow for more 
complicated execution paths. 

A loop statement allows us to execute a statement or group of statements multiple 
times and the following is the general form of a loop statement in most of the 
programming languages − 

 

R programming language provides the following kinds of loop to handle looping 
requirements. Click the following links to check their detail. 

Sr.No. Loop Type & Description 

1 repeat loop 

Executes a sequence of statements multiple times and abbreviates the code that 
manages the loop variable. 

2 while loop 



Repeats a statement or group of statements while a given condition is true. It 
tests the condition before executing the loop body. 

3 for loop 

Like a while statement, except that it tests the condition at the end of the loop 
body. 

 
R - For Loop 

A For loop is a repetition control structure that allows you to efficiently write a loop 
that needs to execute a specific number of times. 

Syntax 

The basic syntax for creating a for loop statement in R is − 

for (value in vector) { 

statements 

} 

Flow Diagram 

 

R’s for loops are particularly flexible in that they are not limited to integers, or even 
numbers in the input. We can pass character vectors, logical vectors, lists or 
expressions. 



Example 
v <- LETTERS[1:4] 

for ( i in v) { 

   print(i) 

} 

When the above code is compiled and executed, it produces the following result − 

[1] "A" 

[1] "B" 

[1] "C" 

[1] "D" 

 

Example 

for (x in 1:10) { 

  print(x) 
} 

Example 2: Program to display days of a week.  

week < - c('Sunday', 

           'Monday', 

           'Tuesday', 

           'Wednesday', 

           'Thursday', 

           'Friday', 

           'Saturday') 

 for (day in week) 

{     print(day) 

} 

 

R - While Loop 

The While loop executes the same code again and again until a stop condition is met. 

Syntax 

The basic syntax for creating a while loop in R is − 

while (test_expression) { 

statement 

} 



Flow Diagram 

 

Here key point of the while loop is that the loop might not ever run. When the condition 
is tested and the result is false, the loop body will be skipped and the first statement 
after the while loop will be executed. 

Example1 

val = 1 

while (val <= 5) 

{ 

    print(val) 

    val = val + 1 

} 
 

Example2 

n < - 5 

factorial < - 1 

i < - 1 

 while (i <= n) 

{ 

   factorial = factorial * i 

   i = i + 1 

} 

 print(factorial) 



 

R - Repeat Loop 
 

It is a simple loop that will run the same statement or a group of statements 

repeatedly until the stop condition has been encountered. Repeat loop does 

not have any condition to terminate the loop, a programmer must specifically 

place a condition within the loop’s body and use the declaration of a break 

statement to terminate this loop. If no condition is present in the body of the 

repeat loop then it will iterate infinitely. 

 

Syntax 

The basic syntax for creating a repeat loop in R is − 

repeat  
{  
   statement 
  
   if( condition )  
   { 
      break 
   } 
} 

Flow Diagram 

 

Example1 

val = 1 

  

repeat 

{ 



    print(val) 

    val = val + 1 

  

    if(val > 5) 

    { 

        break 

    } 

} 

 

Example 2: 

 

i < - 0 

  

repeat 

{ 

    print("Geeks 4 geeks!") 

  

    i = i + 1 

  

    if (i == 5) 

    { 

       break 

    } 

} 

 

 

Loop Control Statements/ Jump statements 

Loop control statements change execution from its normal sequence. When execution 
leaves a scope, all automatic objects that were created in that scope are destroyed. 

R supports the following control statements. Click the following links to check their 
detail. 

Sr.No. Control Statement & Description 

1 break statement 

Terminates the loop statement and transfers execution to the statement 
immediately following the loop. 

2 Next statement 

The next statement simulates the behavior of R switch. 

 

R - Break Statement 



The break statement in R programming language has the following two usages − 

 When the break statement is encountered inside a loop, the loop is immediately 
terminated and program control resumes at the next statement following the 
loop. 

 It can be used to terminate a case in the switch statement  
 

Syntax 

The basic syntax for creating a break statement in R is −break 

Flow Diagram 

 

Example 
for (val in 1: 5) 

{ 

    # checking condition 

    if (val == 3) 

    { 

        # using break keyword 

        break 

    } 

  

    # displaying items in the sequence 

    print(val) 

} 
 

R - Next Statement 

The next statement in R programming language is useful when we want to skip the 
current iteration of a loop without terminating it. On encountering next, the R parser 
skips further evaluation and starts next iteration of the loop. 



Syntax 

The basic syntax for creating a next statement in R is −next 

Flow Diagram 

 

Example 
for (val in 1: 5) 

{ 

    # checking condition 

    if (val == 3) 

    { 

        # using next keyword 

        next 

    } 

  

    # displaying items in the sequence 

    print(val) 



} 

 

Loop over a list 

A for loop is very valuable when we need to iterate over a list of elements or a range of 

numbers. Loop can be used to iterate over a list, data frame, vector, matrix or any other 

object. The braces and square bracket are compulsory. 

For Loop in R Example 1: We iterate over all the elements of a vector and print the current 

value. 

 

# Create fruit vector 

fruit <- c('Apple', 'Orange', 'Passion fruit', 'Banana') 

# Create the for statement 

for ( i in fruit){  

 print(i) 

} 

R - Functions 

Functions are useful when you want to perform a certain task multiple times. A function accepts 

input arguments and produces the output by executing valid R commands that are inside the 

function. In R Programming Language when you are creating a function the function name and 

the file in which you are creating the function need not be the same and you can have one or 

more function definitions in a single R file. 

Types of function in R Language 

Built-in Function: Built function R is sqrt(), mean(), max(), these function are directly call in 

the program by users. 

User-defined Function: R language allow us to write our own function. 

 

Functions in R Language 

Functions are created in R by using the command function(). The general structure of the 

function file is as follows: 



 

Built-in Function in R Programming Language 

Here we will use built-in function like sum(), max() and min(). 

print(sum(4:6)) 

  

# Find max of numbers 4 and 6. 

print(max(4:6)) 

  

# Find min of numbers 4 and 6. 

print(min(4:6)) 

 

User-defined Functions in R Programming Language 

R provides built-in functions like print(), cat(), etc. but we can also create our own functions. 

These functions are called user-defined functions. 

evenOdd = function(x){ 

  if(x %% 2 == 0) 

    return("even") 

  else 

    return("odd") 

} 

  

print(evenOdd(4)) 

print(evenOdd(3)) 

 

Single Input Single Output 

Now create a function in R that will take a single input and gives us a single output.   

areaOfCircle = function(radius){ 

  area = pi*radius^2 

  return(area) 

} 

  

print(areaOfCircle(2)) 

 

Multiple Input Multiple Output 

Now create a function in R Language that will take multiple inputs and gives us multiple 

outputs using a list.  

The functions in R Language takes multiple input objects but returned only one object as 

output, this is, however, not a limitation because you can create lists of all the outputs which 



you want to create and once the list is created you can access them into the elements of the 

list and get the answers which you want. 

 

Rectangle = function(length, width){ 

  area = length * width 

  perimeter = 2 * (length + width) 

    

  # create an object called result which is 

  # a list of area and perimeter 

  result = list("Area" = area, "Perimeter" = perimeter) 

  return(result) 

} 

  

resultList = Rectangle(2, 3) 

print(resultList["Area"]) 

print(resultList["Perimeter"]) 

 

Inline Functions in R Programming Language 

Sometimes creating an R script file, loading it, executing it is a lot of work when you want 

to just create a very small function. So, what we can do in this kind of situation is an inline 

function. 

To create an inline function you have to use the function command with the argument x and 

then the expression of the function.  

f = function(x) x*100 

  

print(f(4)) 

 

Passing arguments to Functions in R Programming Language 

There are several ways you can pass the arguments to the function:  

 Case 1: Generally in R, the arguments are passed to the function in the same order as in 

the function definition. 

 Case 2: If you do not want to follow any order what you can do is you can pass the 

arguments using the names of the arguments in any order. 

 Case 3: If the arguments are not passed the default values are used to execute the 

function. 

 

Rectangle = function(length=5, width=4){ 

  area = length * width 

  return(area) 

} 

  

# Case 1: 

print(Rectangle(2, 3)) 

  



# Case 2: 

print(Rectangle(width = 8, length = 4)) 

  

# Case 3: 

print(Rectangle()) 

 

Lazy evaluations of Functions in R Programming Language 

In R the functions are executed in a lazy fashion. When we say lazy what it means is if 

some arguments are missing the function is still executed as long as the execution does not 

involve those arguments. 

 

Example1: 

Cal= function(a,b,c){ 

  v = a*b 

  return(v) 

} 

  

print(Cal(5, 10)) 

 

Example2: 

Cal= function(a,b,c){ 

  v = a*b*c 

  return(v) 

} 

  

print(Cal(5, 10)) 

 

Function Arguments in R Programming 

Arguments are the parameters provided to a function to perform operations in a programming 

language. In R programming, we can use as many arguments as we want and are separated 

by a comma. There is no limit on the number of arguments in a function in R. In this article, 

we’ll discuss different ways of adding arguments in a function in R programming.  

 

Adding Arguments in R 

We can pass an argument to a function while calling the function by simply giving the value 

as an argument inside the parenthesis. Below is an implementation of a function with a single 

argument. 

divisbleBy5 <- function(n){ 

  if(n %% 5 == 0) 

  { 

    return("number is divisible by 5") 

  } 

  else  

  { 

    return("number is not divisible by 5") 

  } 

} 

    



# Function call 

divisbleBy5(100) 

Adding Multiple Arguments in R 

A function in R programming can have multiple arguments too. Below is an 

implementation of a function with multiple arguments. 

divisible <- function(a, b){ 

  if(a %% b == 0) 

  { 

    return(paste(a, "is divisible by", b)) 

  } 

  else  

  { 

    return(paste(a, "is not divisible by", b)) 

  } 

} 

   

# Function call 

divisible(7, 3) 

 

Adding Default Value in R 

Default value in a function is a value that is not required to specify each time the function is 

called. If the value is passed by the user, then the user-defined value is used by the function 

otherwise, the default value is used. Below is an implementation of function with default 

value. 

divisible <- function(a, b = 3){ 

  if(a %% b == 0) 

  { 

    return(paste(a, "is divisible by", b)) 

  }  

  else 

  { 

    return(paste(a, "is not divisible by", b)) 

  } 

} 

   

# Function call 

divisible(10, 5) 

divisible(12) 

 

Dots Argument 

Dots argument (…) is also known as ellipsis which allows the function to take an undefined 

number of arguments. It allows the function to take an arbitrary number of arguments. 

Below is an example of a function with an arbitrary number of arguments. 

fun <- function(n, ...){ 

  l <- list(n, ...) 

  paste(l, collapse = " ") 

} 

   



# Function call 

fun(5, 1L,  6i, 15.2, TRUE) 

 

Recursive Functions in R Programming 

   

The recursive function uses the concept of recursion to perform iterative tasks they call 

themselves, again and again, which acts as a loop. These kinds of functions need a stopping 

condition so that they can stop looping continuously. 

Recursive functions call themselves. They break down the problem into smaller components. 

The function() calls itself within the original function() on each of the smaller components. 

After this, the results will be put together to solve the original problem. 

Example1: 

fac <- function(x){ 

    if(x==0 || x==1) 

    { 

        return(1) 

    }    

    else 

    { 

        return(x*fac(x-1)) 

    } 

} 

 

fac(3) 

 

 

Nested Functions 

There are two ways to create a nested function: 

 Call a function within another function. 

 Write a function within a function. 

 

 Call a function within another function. 

Example 

Call a function within another function: 

Nested_function <- function(x, y) { 

  a <- x + y 

  return(a) 

} 

 

Nested_function(Nested_function(2,2), Nested_function(3,3)) 



 

 Write a function within a function. 

Example 

Write a function within a function: 

Outer_func <- function(x) { 

  Inner_func <- function(y) { 

    a <- x + y 

    return(a) 

  } 

  return (Inner_func) 

} 

output <- Outer_func(3) # To call the Outer_func 

output(5) 

 

Loading an R package 

Packages 

Packages are collections of R functions, data, and compiled code in a well-defined format. The 

directory where packages are stored is called the library. R comes with a standard set of 

packages. Others are available for download and installation. Once installed, they have to be 

loaded into the session to be used. 

.libPaths() # get library location  

library()   # see all packages installed  

search()    # see packages currently loaded  

Adding Packages 

You can expand the types of analyses you do be adding other packages. A complete list of 

contributed packages is available from CRAN. 

Follow these steps: 

1. Download and install a package (you only need to do this once). 



2. To use the package, invoke the library(package) command to load it into the current session. 

(You need to do this once in each session, unless you customize your environment to 

automatically load it each time.) 

On MS Windows: 

1. Choose Install Packages from the Packages menu. 

2. Select a CRAN Mirror. (e.g. Norway) 

3. Select a package. (e.g. boot) 

4. Then use the library(package) function to load it for use. (e.g. library(boot)) 

 

Load an R Package 

There are basically two extremely important functions when it comes down to R packages: 

 install.packages(), which as you can expect, installs a given package. 

 library() which loads packages, i.e. attaches them to the search list on your R 

workspace. 

To install packages, you need administrator privileges. This means that install.packages() will 

thus not work in the DataCamp interface. However, almost all CRAN packages are installed 

on our servers. You can load them with library(). 

In this exercise, you'll be learning how to load the ggplot2 package, a powerful package for 

data visualization. You'll use it to create a plot of two variables of the mtcars data frame. The 

data has already been prepared for you in the workspace. 

Before starting, execute the following commands in the console: 

 search(), to look at the currently attached packages and 

 qplot(mtcars$wt, mtcars$hp), to build a plot of two variables of the mtcars data frame. 

 

Mathematical Functions in R 

R provides the various mathematical functions to perform the mathematical calculation. These 

mathematical functions are very helpful to find absolute value, square value and much more 

calculations. In R, there are the following functions which are used: 

S. No Function Description Example 

1. abs(x) It returns the absolute value of input x. x<- -4 

print(abs(x)) 

Output 
[1]  4 



2. sqrt(x) It returns the square root of input x. x<- 4 

print(sqrt(x)) 

Output 
[1]  2 

3. ceiling(x) It returns the smallest integer which is larger than or 

equal to x. 

x<- 4.5 

print(ceiling(x)) 

Output 
[1]  5 

4. floor(x) It returns the largest integer, which is smaller than or 

equal to x. 

x<- 2.5 

print(floor(x)) 

Output 
[1]  2 

5. trunc(x) It returns the truncate value of input x. x<- c(1.2,2.5,8.1) 

print(trunc(x)) 

Output 
[1]  1  2  8 

6. round(x, 

digits=n) 

It returns round value of input x. x<- -4 

print(abs(x)) 

Output 
4 

7. cos(x), 

sin(x), 

tan(x) 

It returns cos(x), sin(x) value of input x. x<- 4 

print(cos(x)) 

print(sin(x)) 

print(tan(x)) 

Output 
[1]  -06536436 

[2]  -0.7568025 

[3]  1.157821 

8. log(x) It returns natural logarithm of input x. x<- 4 

print(log(x)) 

Output 
[1]  1.386294 

9. log10(x) It returns common logarithm of input x. x<- 4 

print(log10(x)) 

Output 
[1]  0.60206 

10. exp(x) It returns exponent. x<- 4 

print(exp(x)) 

Output 
[1]  54.59815 

 



Unit-5 

Data Reduction 

Imagine that you have selected data from the AllElectronics data warehouse for analysis. The 

data set will likely be huge! Complex data analysis and mining on huge amounts of data can 

take a long time, making such analysis impractical or infeasible. 

Data reduction techniques can be applied to obtain a reduced representation of the data set that 

is much smaller in volume, yet closely maintains the integrity of the original data. That is, 

mining on the reduced data set should be more efficient yet produce the same (or almost the 

same) analytical results.  

 

Overview of Data Reduction Strategies 

Data reduction strategies include dimensionality reduction, numerosity reduction, and data 

compression. 

 

Dimensionality reduction is the process of reducing the number of random variables or 

attributes under consideration.  

 Dimensionality reduction methods include wavelet transforms and principal 

components analysis, which transform or project the original data onto a smaller space.  

 Attribute subset selection is a method of dimensionality reduction in which irrelevant, 

weakly relevant, or redundant attributes or dimensions are detected and removed.  

 

Numerosity reduction techniques replace the original data volume by alternative, smaller 

forms of data representation.  

 These techniques may be parametric or nonparametric.  

 For parametric methods, a model is used to estimate the data, so that typically only the 

data parameters need to be stored, instead of the actual data. (Outliers may also be 

stored.) Regression and log-linear models are examples.  

 Nonparametric methods for storing reduced representations of the data include 

histograms, clustering, sampling, and data cube aggregation.  

 

In data compression, transformations are applied so as to obtain a reduced or “compressed” 

representation of the original data. If the original data can be reconstructed from the 

compressed data without any information loss, the data reduction is called lossless.  

 If, instead, we can reconstruct only an approximation of the original data, then the data 

reduction is called lossy.  

 There are several lossless algorithms for string compression; however, they typically 

allow only limited data manipulation.  

 Dimensionality reduction and numerosity reduction techniques can also be considered 

forms of data compression. 

 There are many other ways of organizing methods of data reduction. The computational 

time spent on data reduction should not outweigh or “erase” the time saved by mining 

on a reduced data set size. 



 

 

Wavelet Transforms 

The discrete wavelet transform (DWT) is a linear signal processing technique that, when 

applied to a data vector X, transforms it to a numerically different vector, X’, of wavelet 

coefficients.  

 The two vectors are of the same length. When applying this technique to data reduction, 

we consider each tuple as an n-dimensional data vector, that is, X =(.x1,x2, .,., ,xn), 

depicting n measurements made on the tuple from n database attributes.  

 “How can this technique be useful for data reduction if the wavelet transformed data 

are of the same length as the original data?” The usefulness lies in the fact that the 

wavelet transformed data can be truncated. A compressed approximation of the data 

can be retained by storing only a small fraction of the strongest of the wavelet 

coefficients.  

 

 The technique also works to remove noise without smoothing out the main features of 

the data, making it effective for data cleaning as well. Given a set of coefficients, an 

approximation of the original data can be constructed by applying the inverse of the 

DWT used. 

 

 The DWT is closely related to the discrete Fourier transform (DFT), a signal 

processing technique involving sines and cosines. In general, however, the DWT 

achieves better lossy compression.  

 Unlike the DFT, wavelets are quite localized in space, contributing to the conservation 

of local detail. 

 

There is only one DFT, yet there are several families of DWTs. Figure 3.4 shows some wavelet 

families. Popular wavelet transforms include the Haar-2, Daubechies-4, and Daubechies-6. The 

general procedure for applying a discrete wavelet transform uses a hierarchical pyramid 

algorithm that halves the data at each iteration, resulting in fast computational speed. 

 

The method is as follows:  

1. The length, L, of the input data vector must be an integer power of 2. This condition can be 

met by padding the data vector with zeros as necessary (L >=n). 

2. Each transform involves applying two functions. The first applies some data smoothing, such 

as a sum or weighted average. The second performs a weighted difference, which acts to bring 

out the detailed features of the data. 

3. The two functions are applied to pairs of data points in X, that is, to all pairs of measurements 

.x2i ,x2i+1. This results in two data sets of length L=2. In general, these represent a smoothed 

or low-frequency version of the input data and the high frequency content of it, respectively. 

4. The two functions are recursively applied to the data sets obtained in the previous loop, until 

the resulting data sets obtained are of length 2. 5. Selected values from the data sets obtained 

in the previous iterations are designated the wavelet coefficients of the transformed data. 



 

 Equivalently, a matrix multiplication can be applied to the input data in order to obtain 

the wavelet coefficients, where the matrix used depends on the given DWT.  

 The matrix must be orthonormal, meaning that the columns are unit vectors and are 

mutually orthogonal, so that the matrix inverse is just its transpose. By factoring the 

matrix used into a product of a few sparse matrices, the resulting “fast DWT” algorithm 

has a complexity of O(n) for an input vector of length n. 

 

 Wavelet transforms can be applied to multidimensional data such as a data cube. This 

is done by first applying the transform to the first dimension, then to the second, and so 

on.  

 Lossy compression by wavelets is reportedly better than JPEG compression, the current 

commercial standard.  

 Wavelet transforms have many real world applications, including the compression of 

fingerprint images, computer vision, analysis of time-series data, and data cleaning. 

 

Principal Components Analysis 

Principal components analysis (PCA; also called the K-L, method) searches for k n-

dimensional orthogonal vectors that can best be used to represent the data, where k <= n.  

The original data are thus projected onto a much smaller space, resulting in dimensionality 

reduction.  

 

The basic procedure is as follows: 

1. The input data are normalized, so that each attribute falls within the same range. This step 

helps ensure that attributes with large domains will not dominate attributes with smaller 

domains. 

2. PCA computes k orthonormal vectors that provide a basis for the normalized input data.  

3. The principal components are sorted in order of decreasing “significance” or strength.  

4. Because the components are sorted in decreasing order of “significance,” the data size can 

be reduced by eliminating the weaker components, that is, those with low variance. Using the 

strongest principal components, it should be possible to reconstruct a good approximation of 

the original data. 

 

 



Attribute Subset Selection 

Data sets for analysis may contain hundreds of attributes, many of which may be irrelevant to 

the mining task or redundant. For example, if the task is to classify customers based on whether 

or not they are likely to purchase a popular new CD at AllElectronics when notified of a sale, 

attributes such as the customer’s telephone number are likely to be irrelevant, unlike attributes 

such as age or music taste.  

Although it may be possible for a domain expert to pick out some of the useful attributes, this 

can be a difficult and time consuming task, especially when the data’s behavior is not well 

known. (Hence, a reason behind its analysis!) Leaving out relevant attributes or keeping 

irrelevant attributes may be detrimental, causing confusion for the mining algorithm employed. 

This can result in discovered patterns of poor quality. In addition, the added volume of 

irrelevant or redundant attributes can slow down the mining process. 

 

Attribute subset selection reduces the data set size by removing irrelevant or redundant 

attributes (or dimensions). The goal of attribute subset selection is to find a minimum set of 

attributes such that the resulting probability distribution of the data classes is as close as 

possible to the original distribution obtained using all attributes. Mining on a reduced set of 

attributes has an additional benefit: It reduces the number of attributes appearing in the 

discovered patterns, helping to make the patterns easier to understand. 

 

Therefore, heuristic methods that explore a reduced search space are commonly used for 

attribute subset selection. These methods are typically greedy in that, while searching through 

attribute space, they always make what looks to be the best choice at the time. Their strategy 

is to make a locally optimal choice in the hope that this will lead to a globally optimal solution. 

Such greedy methods are effective in practice and may come close to estimating an optimal 

solution. 

The “best” (and “worst”) attributes are typically determined using tests of statistical 

significance, which assume that the attributes are independent of one another. Many other 

attribute evaluation measures can be used such as the information gain measure used in 

building decision trees for classification.5 

Basic heuristic methods of attribute subset selection include the techniques that follow, some 

of which are illustrated in Figure 3.6. 



 

 

1. Stepwise forward selection: The procedure starts with an empty set of attributes as the 

reduced set. The best of the original attributes is determined and added to the reduced set. At 

each subsequent iteration or step, the best of the remaining original attributes is added to the 

set. 

2. Stepwise backward elimination: The procedure starts with the full set of attributes. At each 

step, it removes the worst attribute remaining in the set.  

3. Combination of forward selection and backward elimination: The stepwise forward 

selection and backward elimination methods can be combined so that, at each step, the 

procedure selects the best attribute and removes the worst from among the remaining attributes. 

4. Decision tree induction: Decision tree algorithms (e.g., ID3, C4.5, and CART) were 

originally intended for classification. Decision tree induction constructs a flowchart like 

structure where each internal (nonleaf) node denotes a test on an attribute, each branch 

corresponds to an outcome of the test, and each external (leaf) node denotes a class prediction. 

At each node, the algorithm chooses the “best” attribute to partition the data into individual 

classes. 

When decision tree induction is used for attribute subset selection, a tree is constructed from 

the given data. All attributes that do not appear in the tree are assumed to be irrelevant. The set 

of attributes appearing in the tree form the reduced subset of attributes. 

 

Regression and Log-Linear Models: Parametric Data Reduction 

 

Regression and log-linear models can be used to approximate the given data. In (simple) linear 

regression, the data are modeled to fit a straight line. For example, a random variable, y (called 

a response variable), can be modeled as a linear function of another random variable, x (called 

a predictor variable), with the equation 

 



where the variance of y is assumed to be constant. In the context of data mining, x and y are 

numeric database attributes. The coefficients, w and b (called regression coefficients), specify 

the slope of the line and the y-intercept, respectively.  

 

Multiple linear regression is an extension of (simple) linear regression, which allows a 

response variable, y, to be modeled as a linear function of two or more predictor variables.  

 

Log-linear models approximate discrete multidimensional probability distributions. 

 Given a set of tuples in n dimensions (e.g., described by n attributes), we can consider 

each tuple as a point in an n-dimensional space.  

 Log-linear models can be used to estimate the probability of each point in a 

multidimensional space for a set of discretized attributes, based on a smaller subset of 

dimensional combinations.  

 This allows a higher-dimensional data space to be constructed from lower-dimensional 

spaces.  

 

Histograms 

Histograms use discarding to approximate data distributions and are a popular form of data 

reduction. A histogram for an attribute, A, partitions the data distribution of A into disjoint 

subsets, referred to as buckets or bins. If each bucket represents only a single attribute–

value/frequency pair, the buckets are called singleton buckets. Often, buckets instead represent 

continuous ranges for the given attribute. 

 

 



 

 

Clustering 

 Clustering techniques consider data tuples as objects.  

 They partition the objects into groups, or clusters, so that objects within a cluster are 

“similar” to one another and “dissimilar” to objects in other clusters.  

 Similarity is commonly defined in terms of how “close” the objects are in space, based 

on a distance function.  

 The “quality” of a cluster may be represented by its diameter, the maximum distance 

between any two objects in the cluster.  

 Centroid distance is an alternative measure of cluster quality and is defined as the 

average distance of each cluster object from the cluster centroid. 

 In data reduction, the cluster representations of the data are used to replace the actual 

data.  

 

Sampling 

Sampling can be used as a data reduction technique because it allows a large data set to 

be represented by a much smaller random data sample (or subset). Suppose that a large data 

set, D, contains N tuples. Let’s look at the most common ways that we could sample D for data 

reduction, as illustrated in Figure 3.9. 

 

Simple random sample without replacement (SRSWOR) of size s: This is created by 

drawing s of the N tuples from D (s < N), where the probability of drawing any tuple in D is 

1=N, that is, all tuples are equally likely to be sampled. 

 

Simple random sample with replacement (SRSWR) of size s: This is similar to SRSWOR, 

except that each time a tuple is drawn from D, it is recorded and then replaced. That is, after a 

tuple is drawn, it is placed back in D so that it may be drawn again. 

 



Cluster sample: If the tuples in D are grouped into M mutually disjoint “clusters,” then an SRS 

of s clusters can be obtained, where s < M. For example, tuples in a database are usually 

retrieved a page at a time, so that each page can be considered a cluster. A reduced data 

representation can be obtained by applying, say, SRSWOR to the pages, resulting in a cluster 

sample of the tuples. Other clustering criteria conveying rich semantics can also be explored. 

For example, in a spatial database, we may choose to define clusters geographically based on 

how closely different areas are located. 

 

 

Stratified sample: If D is divided intomutually disjoint parts called strata, a stratified sample 

of D is generated by obtaining an SRS at each stratum. This helps ensure a representative 

sample, especially when the data are skewed. For example, a stratified sample may be obtained 

fromcustomer data, where a stratum is created for each customer age group. In this way, the 

age group having the smallest number of customers will be sure to be represented 

 

An advantage of sampling for data reduction is that the cost of obtaining a sample is 

proportional to the size of the sample, s, as opposed to N, the data set size. Hence, sampling 

complexity is potentially sublinear to the size of the data. Other data reduction techniques can 

require at least one complete pass through D. For a fixed sample size, sampling complexity 

increases only linearly as the number of data dimensions, n, increases, whereas techniques 

using histograms, for example, increase exponentially in n. 

 



When applied to data reduction, sampling is most commonly used to estimate the answer to an 

aggregate query. It is possible (using the central limit theorem) to determine a sufficient sample 

size for estimating a given function within a specified degree of error. This sample size, s, may 

be extremely small in comparison to N. Sampling is a natural choice for the progressive 

refinement of a reduced data set. Such a set can be further refined by simply increasing the 

sample size. 

  

Data Cube Aggregation 

Imagine that you have collected the data for your analysis. These data consist of the 

AllElectronics sales per quarter, for the years 2008 to 2010. You are, however, interested in the 

annual sales (total per year), rather than the total per quarter. Thus, the data can be aggregated 

so that the resulting data summarize the total sales per year instead of per quarter. This 

aggregation is illustrated in Figure 3.10. The resulting data set is smaller in volume, without 

loss of information necessary for the analysis task. Data cubes are discussed in detail in Chapter 

4 on data warehousing and Chapter 5 on data cube technology. We briefly introduce some 

concepts here. Data cubes store  

 

 

Multi-dimensional aggregated information. For example, the above Figure shows a data 

cube for multidimensional analysis of sales data with respect to annual sales per item type for 

each AllElectronics branch. Each cell holds an aggregate data value, corresponding to the data 

point in multidimensional space. (For readability, only some cell values are shown.) Concept 

hierarchies may exist for each attribute, allowing the analysis of data at multiple abstraction 



levels. For example, a hierarchy for branch could allow branches to be grouped into regions, 

based on their address. Data cubes provide fast access to precomputed, summarized data, 

thereby benefiting online analytical processing as well as data mining. 

 

The cube created at the lowest abstraction level is referred to as the base cuboid. The 

base cuboid should correspond to an individual entity of interest such as sales or customer. In 

other words, the lowest level should be usable, or useful for the analysis. A cube at the highest 

level of abstraction is the apex cuboid. For the sales data in Figure 3.11, the apex cuboid would 

give one total—the total sales for all three years, for all item types, and for all branches. Data 

cubes created for varying levels of abstraction are often referred to as cuboids, so that a data 

cube may instead refer to a lattice of cuboids. Each higher abstraction level further reduces the 

resulting data size. When replying to data mining requests, the smallest available cuboid 

relevant to the given task should be used.  

 

Data Visualization 
 

 Data visualization aims to communicate data clearly and effectively through graphical 

representation. Data visualization has been used extensively in many applications—for 

example, at work for reporting, managing business operations, and tracking progress of tasks. 

More popularly, we can take advantage of visualization techniques to discover data 

relationships that are otherwise not easily observable by looking at the raw data. Nowadays, 

people also use data visualization to create fun and interesting graphics. 

 

This section start with multidimensional data such as those stored in relational 

databases. We discuss several representative approaches, including pixel-oriented techniques, 

geometric projection techniques, icon-based techniques, and hierarchical and graph-based 

techniques. We then discuss the visualization of complex data and relations. 

 

Pixel-Oriented Visualization Techniques 

 

A simple way to visualize the value of a dimension is to use a pixel where the color of 

the pixel reflects the dimension’s value. For a data set of m dimensions, pixel-oriented 

techniques create m windows on the screen, one for each dimension. The m dimension values 

of a record are mapped tompixels at the corresponding positions in the windows. 

The colors of the pixels reflect the corresponding values. Inside a window, the data 

values are arranged in some global order shared by all windows. The global order may be 

obtained by sorting all data records in a way that’s meaningful for the task at hand.  

Pixel-oriented visualization. AllElectronics maintains a customer information table, 

which consists of four dimensions: income, credit limit, transaction volume, and age. Can we 

analyze the correlation between income and the other attributes by visualization? We can sort 

all customers in income-ascending order, and use this order to lay out the customer data in the 

four visualization windows, as shown in Figure 2.10. The pixel colors are chosen so that the 

smaller the value, the lighter the shading. Using pixelbased visualization, we can easily observe 

the following: credit limit increases as income increases; customers whose income is in the 



middle range are more likely to purchase more from AllElectronics; there is no clear correlation 

between income and age. 

In pixel-oriented techniques, data records can also be ordered in a query-dependent 

way. For example, given a point query, we can sort all records in descending order of similarity 

to the point query. 

Filling a window by laying out the data records in a linear way may not work well for 

a wide window. The first pixel in a row is far away fromthe last pixel in the previous row, 

though they are next to each other in the global order. Moreover, a pixel is next to the one 

above it in the window, even though the two are not next to each other in the global order. To 

solve this problem, we can lay out the data records in a space-filling curve to fill the windows. 

A space-filling curve is a curve with a range that covers the entire n-dimensional unit 

hypercube. Since the visualization windows are 2-D, we can use any 2-D space-filling curve.  

Figure 2.11 shows some frequently used 2-D space-filling curves. Note that the 

windows do not have to be rectangular. For example, the circle segment technique uses 

windows in the shape of segments of a circle, as illustrated in Figure 2.12. This technique can 

ease the comparison of dimensions because the dimension windows are located side by side 

and form a circle. 

 

 



 
 

Geometric Projection Visualization Techniques 

 

A drawback of pixel-oriented visualization techniques is that they cannot help us much 

in understanding the distribution of data in a multidimensional space. For example, they do not 

show whether there is a dense area in a multidimensional subspace. Geometric projection 

techniques help users find interesting projections of multidimensional data sets. The central 

challenge the geometric projection techniques try to address is how to visualize a high-

dimensional space on a 2-D display. 

 

A scatter plot displays 2-D data points using Cartesian coordinates. A third dimension 

can be added using different colors or shapes to represent different data points. Figure 2.13 

shows an example, where X and Y are two spatial attributes and the third dimension is 

represented by different shapes. Through this visualization, we can see that points of types “+” 

and “_” tend to be colocated. 

 
 

A 3-D scatter plot uses three axes in a Cartesian coordinate system. If it also uses color, 

it can display up to 4-D data points (Figure 2.14).  



 
For data sets with more than four dimensions, scatter plots are usually ineffective. The 

scatter-plot matrix technique is a useful extension to the scatter plot. For an  n dimensional 

data set, a scatter-plot matrix is an n_n grid of 2-D scatter plots that provides a visualization of 

each dimension with every other dimension. Figure 2.15 shows an example, which visualizes 

the Iris data set. The data set consists of 450 samples from each of three species of Iris flowers. 

There are five dimensions in the data set: length and width of sepal and petal, and species. The 

scatter-plot matrix becomes less effective as the dimensionality increases. Another popular 

technique, called parallel coordinates, can handle higher dimensionality. To visualize n-

dimensional data points, the parallel coordinates technique draws n equally spaced axes, one 

for each dimension, parallel to one of the display axes. 

 
A data record is represented by a polygonal line that intersects each axis at the point 

corresponding to the associated dimension value. 



A major limitation of the parallel coordinates technique is that it cannot effectively 

show a data set of many records. Even for a data set of several thousand records, visual clutter 

and overlap often reduce the readability of the visualization and make the patterns hard to find. 

 

Icon-Based Visualization Techniques 

 

Icon-based visualization techniques use small icons to represent multidimensional data 

values. We look at two popular icon-based techniques: Chernoff faces and stick figures.  

Chernoff faces were introduced in 1973 by statistician Herman Chernoff. They display 

multidimensional data of up to 18 variables (or dimensions) as a cartoon human face (Figure 

2.17). Chernoff faces help reveal trends in the data. Components of the face, such as the eyes, 

ears, mouth, and nose, represent values of the dimensions by their shape, size, placement, and 

orientation.  

For example, dimensions can be mapped to the following facial characteristics: eye 

size, eye spacing, nose length, nose width, mouth curvature, mouth width, mouth openness, 

pupil size, eyebrow slant, eye eccentricity, and head eccentricity. Chernoff faces make use of 

the ability of the human mind to recognize small differences in facial characteristics and to 

assimilate many facial characteristics at once. 

 

 
Viewing large tables of data can be tedious. By condensing the data, Chernoff faces 

make the data easier for users to digest. In this way, they facilitate visualization of regularities 

and irregularities present in the data, although their power in relating multiple relationships is 

limited. Another limitation is that specific data values are not shown. 

Furthermore, facial features vary in perceived importance. This means that the 

similarity of two faces (representing twomultidimensional data points) can vary depending on 

the order in which dimensions are assigned to facial characteristics. Therefore, this mapping 



should be carefully chosen. Eye size and eyebrow slant have been found to be important. 

Asymmetrical Chernoff faces were proposed as an extension to the original technique.  

 

Since a face has vertical symmetry (along the y-axis), the left and right side of a face 

are identical, which wastes space. Asymmetrical Chernoff faces double the number of facial 

characteristics, thus allowing up to 36 dimensions to be displayed. The stick figure 

visualization technique maps multidimensional data to five-piece stick figures, where each 

figure has four limbs and a body. Two dimensions are mapped to the display (x and y) axes 

and the remaining dimensions are mapped to the angle and/or length of the limbs. Figure 2.18 

shows census data, where age and income are mapped to the display axes, and the remaining 

dimensions (gender, education, and so on) are mapped to stick figures. If the data items are 

relatively dense with respect to the two display dimensions, the resulting visualization shows 

texture patterns, reflecting data trends. 

 

Hierarchical Visualization Techniques 

 

The visualization techniques discussed so far focus on visualizing multiple dimensions 

simultaneously. However, for a large data set of high dimensionality, it would be difficult to 

visualize all dimensions at the same time. Hierarchical visualization techniques partition all 

dimensions into subsets (i.e., subspaces). The subspaces are visualized in a hierarchical 

manner. “Worlds-within-Worlds,” also known as n-Vision, is a representative hierarchical 

visualization method. Suppose we want to visualize a 6-D data set, where the dimensions are 



F,X1, . , . , . , X5.We want to observe how dimension F changes with respect to the other 

dimensions.  

We can first fix the values of dimensions X3,X4,X5 to some selected values, say, c3, 

c4, c5.We can then visualize F,X1,X2 using a 3-D plot, called a world, as shown in Figure 2.19. 

The position of the origin of the inner world is located at the point .c3, c4, c5/ in the outer 

world, which is another 3-D plot using dimensions X3,X4,X5. A user can interactively change, 

in the outer world, the location of the origin of the inner world. The user then views the resulting 

changes of the inner world. Moreover, a user can vary the dimensions used in the inner world 

and the outer world. Given more dimensions, more levels of worlds can be used, which is why 

the method is called “worlds-within worlds.” 

As another example of hierarchical visualization methods, tree-maps display 

hierarchical data as a set of nested rectangles. For example, Figure 2.20 shows a tree-map 

visualizing Google news stories. All news stories are organized into seven categories, each 

shown in a large rectangle of a unique color. Within each category (i.e., each rectangle at the 

top level), the news stories are further partitioned into smaller subcategories. 

 

 
 

Visualizing Complex Data and Relations 
 

In early days, visualization techniques were mainly for numeric data. Recently, more 

and more non-numeric data, such as text and social networks, have become available. 

Visualizing and analyzing such data attracts a lot of interest. There are many new visualization 

techniques dedicated to these kinds of data.  



For example, many people on theWeb tag various objects such as pictures, blog entries, 

and product reviews. A tag cloud is a visualization of statistics of user-generated tags. Often, 

in a tag cloud, tags are listed alphabetically or in a user-preferred order. The importance of a 

tag is indicated by font size or color. Figure 2.21 shows a tag cloud for visualizing the popular 

tags used in aWeb site. Tag clouds are often used in two ways. First, in a tag cloud for a single 

item, we can use the size of a tag to represent the number of times that the tag is applied to this 

item by different users.  

Second, when visualizing the tag statistics on multiple items, we can use the size of a 

tag to represent the number of items that the tag has been applied to, that is, the popularity of 

the tag. In addition to complex data, complex relations among data entries also raise challenges 

for visualization. For example, Figure 2.22 uses a disease influence graph to visualize the 

correlations between diseases. The nodes in the graph are diseases, and the size of each node 

is proportional to the prevalence of the corresponding disease. Two nodes are linked by an edge 

if the corresponding diseases have a strong correlation. 

The width of an edge is proportional to the strength of the correlation pattern of the two 

corresponding diseases.  

In summary, visualization provides effective tools to explore data. We have introduced 

several popular methods and the essential ideas behind them. There are many existing tools 

and methods. Moreover, visualization can be used in data mining in various aspects. In addition 

to visualizing data, visualization can be used to represent the data mining process, the patterns 

obtained from a mining method, and user interaction with the data. Visual data mining is an 

important research and development direction. 



 

 


